To search by structure, left click in the box below to display the chemdraw toolbar. Then, draw the chemical structure of interest in the box using the toolbar. When your structure is complete, click “Search by Name” or “Search by SMILES” to generate the product name or SMILES respectively. This feature will search within the Gelest product database for matching chemical names or SMILES. Note: In cases where Gelest uses alternate chemical names, it may be necessary to search for the product of interest by its CAS#.
All structures are computer generated. Please rely on the product data below for placing your order. If you see any errors in structures, please email customer service so that they can be addressed.
PHENYLTRIMETHOXYSILANE
Product data and descriptions listed are typical values, not intended to be used as specification.
Arylsilane Cross-Coupling Agent
The cross-coupling reaction is a highly useful methodology for the formation of carbon-carbon bonds. It involves two reagents, with one typically being a suitable organometallic reagent - the nucleophile - and the other a suitable organic substrate, normally an unsaturated halide, tosylate or similar - the electrophile.
Aromatic Silane - Conventional Surface Bonding
Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure.
Phenyltrimethoxysilane, Trimethoxysilylbenzene
EINECS Number: 221-066-9
Specific Gravity: 1.064
Flashpoint: 86°C (187°F)
HMIS Key: 3-2-1-X
Hydrolytic Sensitivity: 7: reacts slowly with moisture/water
Formula: C9H14O3Si
TSCA: TSCA
Refractive Index: 1.4734
Application: Cross couples with aryl halides.1
Extensive review on the use in silicon-based cross-coupling reactions.10
Phenylates heteroaromatic carboxamides.2
Directly couples with 1o alkyl bromides and iodides.3
Converts carboxylic acids to phenyl esters and vinyl carboxylates.4
Converts arylselenyl bromides to arylphenylselenides.5
Reacts with anhydrides to transfer both phenyl and methoxy and thus form the mixed diester.6
Used in the nickel-catalyzed direct phenylation of C-H bonds in heteroaromatic system such as benzoxazoles.7
Immobilization reagent for aligned metallic single wall nanotubes (SWNT).8,9
Reference: 1. Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64, 1684.
10. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011.
2. Lam, P. Y. S. et al. Tetrahedron Lett. 2001. 42, 2427.
3. Young, J.-Y.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616.
4. Luo, F. et al. Synthesis 2010, 2005.
5. Bhadra, S. et al. J. Org. Chem. 2010, 75, 4864.
6. >Luo, F. et al. J. Org. Chem. 2010, 75, 5379.
7. Hachilya, H. et al. Angew. Chem., Int. Ed. Engl. 2010, 49, 2202.
8. LeMieux, M. Science 2008, 321, 101.
9. Nish, A. et al. Nature Nanotechnol. 2007, 2, 640.
Fieser:
Additional Properties: Dipole moment: 1.77 debyeDielectric constant: 4.44Intermediate for high temperature silicone resinsVapor pressure, 108°: 20 mm