All structures are computer generated. Please rely on the product data below for placing your order. If you see any errors in structures, please email customer service so that they can be addressed.


Product Code: AKZ965

Cas No: 24675-20-5

50 g
10 g
ALD Material

Atomic layer deposition (ALD) is a chemically self-limiting deposition technique that is based on the sequential use of a gaseous chemical process. A thin film (as fine as -0.1 Å per cycle) results from repeating the deposition sequence as many times as needed to reach a certain thickness. The major characteristic of the films is the resulting conformality and the controlled deposition manner. Precursor selection is key in ALD processes, namely finding molecules which will have enough reactivity to produce the desired films yet are stable enough to be handled and safely delivered to the reaction chamber.

CVD Material

The growth of thin films via chemical vapor deposition (CVD) is an industrially significant process with a wide array of applications, notably in microelectronic device fabrication. A volatilized precursor (such as a silane, organometallic or metal coordination complex) is passed over a heated substrate. Thermal decomposition of the precursor produces a thin-film deposit, and ideally, the ligands associated with the precursor are cleanly lost to the gas phase as reaction products. Compared to other thin-film production techniques, CVD offers several significant advantages, most notably the potential for effecting selective deposition and lower processing temperatures. Many metal CVD depositions are autocatalytic. Growth of such thin films is characterized by an induction period, which is a consequence of the higher barriers that relate to the activation of the precursor on a non-native substrate. CVD is the preferred deposition method for fabricating optical storage, as it is a well-established method with good scalability, reproducibility, and uniformity. It is also capable of high rates and good composition control.

Zirconium 2-methyl-2-butoxide; Zirconium t-pentyloxide; Zirconium t-amyloxide
  • Viscosity, 25 °C: 7-8 cSt
  • ΔHvap: 16.3 kcal/mol
  • Decomposes >225 °C
  • Vapor pressure, 58 °C: 0.02 mm
  • Vapor pressure, 75 °C: 0.08 mm
  • Vapor pressure, 100 °C: 0.61 mm
  • Vapor pressure, 150 °C: 8.79 mm
  • Soluble: hydrocarbons, t-amyl alcohol
  • Molecular complexity: 1.0
  • Sol-gel precursor for zirconium oxides used in plasma sprays
  • Intermediate for ZrO2 by CVD
  • Alternative Name: ZIRCONIUM t-PENTYLOXIDE

    Specific Gravity: 0.961

    Flashpoint: 114°C (237°F)

    HMIS Key: 2-1-1-X

    Formula: C20H44O4Zr

    Application: Sol-gel precursor for zirconium oxides used in plasma sprays.1
    Intermediate for ZrO2 by CVD.2

    Reference: 1. NASA Tech Brief 9(1) Item JPL invention NPO-16228/5682.
    2. Mazdiyansi, K. et al. USAF Report ASD-TDR-63-322, 1963.

    Additional Properties: 1
    Vapor pressure, 150°: 8.79 mm
    ?Hvap: 16.3 kcal/mole
    Hydrocarbons, t-amyl alcohol
    Decomposes >225°C
    Vapor pressure, 75°: 0.08 mm
    Vapor pressure, 100°: 0.61 mm