High-heat silane coupling agents are an aid to resin processing

By Barry Arkes* and William Petersen*

Ethylene-bridged aromatic silanes with various organic functionalities have been developed for use as coupling agents at high processing temperatures. The silanes show coupling activity in a variety of thermoplastic and thermostet composites, including polyamides, polyimides, poly diallyl phthalates, and unsaturated polyesters.

The general order of increasing thermal stability for organosilane coupling agents is shown in the box on this page under number key 3. In this formula, Z is a functional group intended to be reactive with the polymer portion of the composite material. X is a hydroxygeal group, typically alkox, which is displaced during the reaction with the substrate portion of the composite.

The strongly electropositive nature of silicon tends to polarize the carbon-silicon bond in positions beta to the silicon Z. This phenomenon occurs particularly if its electron withdrawing contributes to nucleophilic elimination of an ethylenic group. Fluorocarbons have a tendency to decompose at 40°C. In mild basic conditions, although they are more stable than the beta substitution materials, alpha substitution is decomposed by an electrophilic mechanism. Accordingly, most commercially available commercial coupling agents possess functionality at the gamma carbon. This class of silane materials has provided sufficient thermal stability for application to most resins. Examples, together with the thermogravimetric analysis temperature (TGA) at which there is a 20% loss of hydrolyzate (1), are given in the accompanying box, and are identified under number key 2.

The introduction of resins which process at temperatures in excess of 350°C or receive continuous exposure to temperatures in excess of 150°C, exceeds the thermal stability of gamma substituted silanes.

It has been demonstrated that extremely thermally stable silane coupling agents can be prepared when aromatic groups are bound to the silicon (2,3).

They are identified under number key 3 in the box.

The principal drawback of aromatic silanes of this type is economics. The chemistry involved is usually multi-step and low-yield, discounting the materials as commercially significant.

We have recently introduced a new series of silanes, with thermal stability intermediate between gamma and aromatic materials. They are ethylene-bridged aromatics: Z CH₃ C₆H₄ CH₂ CH₃ SiX₃ (ethylene-bridged aromatic substitution). These materials have significantly greater thermal stability than the gamma functional silanes. Stability is marginally lower than the fully aromatic silanes. The ethylene-bridged aromatic silanes have demonstrated utility in resins processing at temperatures up to 400°C and with continuous exposure to 200°C. They include a chloromethyl, a styril, and a dimine functional silane. See box, number key 4.

Test results
The thermal stability of the aliphatic-bridged aromatic silanes was evaluated by preparing cured hydrolyrates and observing the 25% weight loss by TGA (nitrogen, 5°C/min.). The 25% TGA weight loss exceeds 425°C. For all materials tested (Table I), the chloromethyl derivative had the greatest stability (495°C), while the diamine demonstrated the least stability (435°C).

Thermoset composites were prepared from heat-cleaned glass-fiber mats. Laminates containing 30% resin were prepared under recommended processing conditions. Flexural strength was measured as molded, after 200°C exposure for 100 hr. and after a 2-hr. boil (Table II). For DAP compositions initial strengths achieved with the styryl silane exceeded that achieved by methacryloxy silane by 16%. The differential increased to 20% after 200°C exposure. Initial strengths of the polyester composite were greater with methacryloxypropyltrimethoxysilane than the styrylylsilane. After 200°C exposure the methacryloxysilane lost over 25% of its strength while the styryl silane lost less than 5%.

Thermoplastic composites prepared with water-sized chopped glass strands were extrusion compounded prior to injection molding. The flexural strengths and tensile strength of specimens were

1	Z CH₂CH₂SiX₃	(beta substitution)
Z CH₂SiX₃	(alpha substitution)	
Z CH₂CH₂CH₂SiX₃	(gamma substitution)	
Z CH₂(β)SiX₃	(aromatic substitution)	
2	H₂N CH₂CH₂NHCH₂CH₂CH₂Si(OMe)₃	390°C.
CICH₂CH₂CH₂Si(OMe)₃	360°C.	
H₂C = C (CH₃) CO₂CH₂CH₂CH₂Si(OMe)₃	395°C.	
3	H₂N(β)Si(OME)₃	485°C.
Me-β-Si(OMe)₃	530°C.	
HOOC-β-Si(OMe)₃	510°C.	
4	CICCH₂(β)CH₂CH₂Si(OMe)₃	C-T2902
H₂C = CH(β)CH₂CH₂CH₂Si(OMe)₃	PSX083	
H₂NCH₂CH₂NHCH₂(β)-CH₂CH₂Si(OMe)₃	PSX084	

1 Numbers are parentheses designate references at end of article.
2 Based on a paper presented at the 35th SPI KPC Institute Conference in New Orleans.

*Now with Gelest, Inc., Morrisville, PA.
The Nylon 66 Sweepstakes.

Official rules

1. Fill out the official entry blank or a 3" x 5" card handprinted with your name and completed address. Be sure to include with your entry only the weight of the actual part made only from Nylon 66 or reinforced Nylon 66.

2. YOUR ENTRY MUST BE AN INJECTION MOLDED PART PRODUCED FOR COMMERCIAL USE WITHIN THE LAST FIVE YEARS. HOWEVER, IT DOES NOT HAVE TO BE A PART MADE FROM MONSANTO’S VYDYNE NYLON MATERIAL.

3. Mail your entry to Vydyna Makes All Sizes Contest, P.O. Box 155, New York, NY 10046. Enter as often as you like but each entry must be mailed separately. All entries must be received no later than April 30, 1981, in order to be eligible to win.

4. Winners will be selected in three ways: (1) The largest part by weight, (2) The smallest part by weight and (3) A sweepstakes drawing from all entries received. All parts must be made from Nylon 66 or reinforced Nylon 66. Winners will be selected by Marden-Kane, Inc., an independent judging organization whose decisions are final.

5. In the event there is more than one entry received in a category with the identical weight, then the winners will be selected in a random drawing. Winners will be required to submit their winning part to Monsanto for verification and sign an affidavit of eligibility. Winners will be notified by mail. Only one prize will be awarded to an individual for all three categories. All taxes are the sole responsibility of the prize winners.

6. Prize Structure: A trip to Walt Disney World for four people for 3 nights and 4 days. Trip includes round trip air transportation (coach) from airport nearest winner’s home, accommodations at the Contemporary Hotel, admission to Disney World for 3 days plus $200.00 spending money. Total approximate retail value: $2,000.00. No prize substitution permitted and winners must take their trips by December 31, 1981.

7. Contest open to all persons 18 years or older of the Continental USA who are employed by a company that uses or molds parts made of nylon material, except employees and their immediate families of Monsanto Company, its subsidiaries, its advertising agency and Marden-Kane, Inc. Void where prohibited by law. All federal, state and local regulations apply.

8. For a list of winners send a stamped self-addressed envelope to Vydyna Winners List, P.O. Box 155, New York, NY 10046.

determined by ASTM D790 and D638 (Table III). The amine-functional high temperature silane (PSX084) produced the best results across the board, with values higher than those previously reported (4,5). The differential versus the nonaromatic amine control (C-A0700) increased with increasing process temperature of the resins, i.e., polyamide-imide > polysulfone > nylon-6/6. The chloromethyl aromatic group has lower reactivity than the amine groups in the polyamide-imide resin tested: yet in C-T2902 it gave superior results when compared to the nonaromatic amine. This indicates that the thermal stability of the nonaromatic amine silane is inadequate for resins processing at temperatures in excess of 350°C.

Conclusions

This new series of ethylene-bridged aromatic silanes has improved thermal stability compared with currently available commercial materials. Vinyl functional materials of this class demonstrate coupling activity in DAP and polyester resins; maintenance of composite strength has been found to be superior to that of materials which are based on nonaromatic silanes.

In our evaluations, diamine silane produced greater composite strength than the nonaromatic amine. Chloromethyl silane gave greater coupling in polyamide-imide than nonaromatic amine, indicating the latter’s inadequate thermal stability for high-temperature resin compounding.

References