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Silicon nitride coatings are generally
produced by CVD techniques which involve
mixtures of gases, typically SiH, /NHzor SiCl
/NH3 in  carriers. The  fabrication  of
passivation layers and dielectic coatings
demand consistent electrical, mechanical and
etch (chemical) properties. Operationally,
this is difficult to accomplish since silicon
nitrides of variable stoichiometry are
deposited from gas mixtures depending on
compositional, thermal, and surface variation
in the deposition environment. Proposals for
alternate silicon nitride sources that should
lead to more uniform stoichiometry include
single monomer approaches. Reinbergl has
reported trisilylamine [(H3 Si)3 N] as a
silicon nitride source, but the material is
difficult to prepare and is pyrophoric. Other

approaches to silicon nitride sources are
found in the ceramic field. These include
polysilazane, polyorganosilazanes and a

variety of non-volatile resinous materials
such as sesquisilazanes which are not
suitable for the production of thin films of
silicon nitride. Moreover, polysilazanes in
which there is no carbon substitution have
poor storage stability,2 while previously
reported organosilazanes yield high levels of
silicon carbide on pyrolysisﬁ’a’

In this report the formation of silicon
nitride from cyclic and linear organosilazane
prepolymers is reported. The materials having
the following structure were prepared in
cyclic and linear forms. Poly(1l,1-
dimethylsilazane) is included for comparison
with earlier work.
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Table I.

Structure & Physical Properties of Organosilazanes
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The cyclic silazanes are readily
prepared by one or two stage aminolysis
reactions, e.g.
N‘e N‘e Me
|
[4] 2 MeHSICIl, + 3 MeNH,——> CI—SIai—N—S[i—CI + 2MeNH,CI
H H
Me H
Me Me Me /N\M;”/N

O
[5] 2 CI=Si—N—Si—Cl + 6 NH,—> HMesi“}~~ g~ "siMer + 4 NH,.CI

MeH

The linear polymers are prepared by
catalytic reequilibration of the cyclic
materials at 225-300°C. They are soluble in
hydrocarbons. :

Essentially identical compositions

result from the pyrolysis of cyclic or linear
organosilazanes at pyrolysis temperatures of
350°C

or greater. Complete conversion to
ceramic occurs at temperatures exceeding
700°C. Slight changes in morphology without

changes in elemental composition appear to
occur at higher temperatures.
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Table II.
Thermal Characteristics
Polymer Principal Silicon Yield %
Endotherm* Nitride**
Content%
1. 440-450° 30-40 5-10
2. 375-385° 50-60 15-20
3. 286-287° 80-85 50-55
1,1-dimethylsilazanes and 1,2-dimethyl-
silazanes have the same ratio of silicon,
nitrogen, and hydrogen. The 1,2-dimethyl-
silazanes undergo conversion at lower
temperatures to higher levels of silicon
nitride at higher yields. This may be

accounted for by the lower bond dissociation
of N-CH3compared to Si—CH3ﬁ The dramatic yield
enhancement in the 1,2-dimethylsilazane-1-
methylsilazane copolymer may be accounted for
by several factors: The carbon content is
lower, the bond dissociation energies of N-CHj3
vs. Si-CHj3, and the ability of the relatively
basic nitrogen to react with silicon hydride
generating hydrogen byproduct. It should be
noted that although the base interaction with
silicon hydride is the likely cause of poor
stability in dinorganic polysilazanes, the
methyl substituted silicon hydrides appear to
have acceptable stability.
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Figure 2.
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Figure 3.
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