Gelest

Hydrophobicity, Hydrophilicity and Silane Surface Modification

Materials for:

Water-Repellents

Anti-Stiction Coatings

Mineral Surface Treatments

Fillers for Composites

Pigment Dispersants

Dielectric Coatings

Release Coatings

Optical (LCD) Coatings

Bonded Phases

Self-Assembled Monolayers (SAMs)

Architectural Coatings

Version 2.0

New!
Silanes with Embedded Polarity
Biomimetic Silanes
Fluorescent Silanes

Gelest, Inc.

Telephone: General 215-547-1015

Order Entry 888-734-8344

Technical Service: 215-547-1016

FAX: 215-547-2484 Internet: www.gelest.com

e-mail: sales@gelest.com 11 East Steel Rd. Correspondence:

Morrisville, PA 19067

For further information consult our web site at: www.gelest.com

In Europe:

For commercial and bulk quantities contact:

Gelest Ltd.

46 Pickering Street

Maidstone

Kent ME15 9RR United Kingdom

Tel: +44(0)-1622-741115 Fax: +44(0)-8701-308421 e-mail: europe@gelest.com For research quantities in Europe:

Gelest Inc.

Stroofstrasse 27 Geb.2901 65933 Frankfurt am Main.

Germany

Tel: +49-(0)-69-3800-2150 Fax: +49-(0)-69-3800-2300 e-mail: info@gelestde.com Internet: www.gelestde.com

In Japan:

For commercial and research quantities contact:

AZmax Co. Ltd. Tokyo Office

Matsuda Yaesudori, Bldg F8 1-10-7 Hatchoubori, Chuo-Ku

Tokyo 104-0032

Tel: 81-3-5543-1630 Fax: 81-3-5543-0312 e-mail: sales@azmax.co.jp

on-line catalog: www.azmax.co.jp

In South-East Asia:

For commercial and research quantities contact:

Gulf Chemical

39 Jalan Pemimpin

Tai Lee Industrial Building #04-03

Singapore 577182 Tel: 65-6358-3185 Fax: 65-6353-2542

e-mail: support@gulfchem.com.sg

Front Cover Photos: Water rolls off a duck's back. Lotus leaves exhibit superhydrophobicity. Biological systems are dependent on water, but at the same time must control the interaction. In a sense, all living organisms exhibit behaviors that can be described as both hydrophobic and hydrophilic.

Sales of all products listed are subject to the published terms and conditions of Gelest, Inc.

Gelest Hydrophobicity, Hydrophilicity

and Silane Surface Modification

by Barry Arkles

TABLE OF CONTENTS

Silanes and Surface Modification2Water, Hydrophobicity and Hydrophilicity3Wettability and Contact Angle4Critical Surface Tension and Adhesion5How does a Silane Modify a Surface?6Selecting a Silane for Surface Modification7Hydrophobic Surface Treatments8Superhydrophobicity and Oleophobicity9Hydrophilic Surface Treatments10Range of Water Interaction with Surfaces11Reacting with the Substrate12
Special Topics:
Dipodal Silanes13Linker Length.14Embedded/Tipped Polarity15Partition, Orientation and Self-Assembly in Bonded Phases16Modification of Metal Substrates17Difficult Substrates18
Applying a Silane Surface Treatment19Biomimetic Silane Surface Treatments21Alkylphosphonic Acid Surface Treatments21Hydrophobic Silane Selection Guide22
Silane Properties:
Hydrophobic Silanes
Hydrophobicity, Hydrophilicity and Silane Surface Modification

Barry Arkles ©2011 Gelest, Inc.

Silanes and Surface Modification

Silanes are silicon chemicals that possess a hydrolytically sensitive center that can react with inorganic substrates such as glass to form stable covalent bonds and possess an organic substitution that alters the physical interactions of treated substrates.

organic substitution allows permanent property modification

hydrolyzable alkoxy (alcohol) groups

Property modifications include:

Hydrophobicity
Adhesion
Release
Dielectric
Absorption
Orientation
Hydrophilicity
Charge Conduction

Applications include:

Architectural Coatings
Water-Repellents
Anti-stiction Coatings for MEMs
Mineral Surface Treatments
Fillers for Composites
Pigment Dispersants
Dielectric Coatings
Anti-fog Coatings

Release Coatings Optical (LCD) Coatings

D - - 1 - 1 Db - - - -

Bonded Phases

Self-Assembled Monolayers (SAMs)

Crosslinkers for Silicones Nanoparticle Synthesis Anti-Corrosion Coatings

In contrast with silanes utilized as coupling agents in adhesive applications, silanes used to modify the surface energy or wettability of substrates under normal conditions do not impart chemical reactivity to the substrate. They are often referred to as non-functional silanes. The main classes of silanes utilized to effect surface energy modification without imparting reactivity are:

Hydrophobic Silanes

Methyl Linear Alkyl Branched Alkyl Fluorinated Alkyl Aryl

Dipodal

Hydrophilic Silanes

Polar Hydroxylic Ionic

Charge inducible/charge switchable

Embedded Hydrophilicity

Masked

Water, Hydrophobicity and Hydrophilicity

Hydrophobic and **Hydrophilic** are frequently used descriptors of surfaces. A surface is hydrophobic if it tends *not to* adsorb water or be wetted by water. A surface is hydrophilic if it tends to adsorb water or be wetted by water. More particularly, the terms describe the interaction of the boundary layer of a solid phase with liquid or vapor water. Silanes can be used to modify the interaction of boundary layers of solids with water with a high degree of control, effecting variable degrees of hydrophobicity or hydrophilicity.

Since the interaction of water with surfaces is frequently used to define surface properties, a brief review of its structure and properties can be helpful. Although the structure of water is a subject of early discussion in the study of physical sciences, it is interesting to note that the structure of liquid water is still not solved and, even so, most technologists lose appreciation of what is known about its structure and properties.

The quantum calculation of the structure of an isolated H₂O molecule has evolved to the currently accepted model which demonstrates a strong dipole, but no lone electron pairs associated with sp³ hybridized orbitals of oxygen. This model of isolated H₂O conforms most closely to the vapor state and extrapolation often leads to the conclusion that water is a collection of individual molecules which associate with each other primarily through dipole interactions. The polar nature of water, with its partial positive and partial negative dipole, explains why bulk water readily dissolves many ionic species and interacts with ionic surfaces. The difference between isolated vapor phase water and bulk liquid water is much more extreme than can be accounted for by a model relying only on dipole interactions. The properties of bulk liquid water are strongly influenced by hydrogen bond interactions. In the liquid state, despite 80% of the electrons being concerned with bonding, the three atoms of a water molecule do not stay together as discrete molecules. The hydrogen atoms are constantly exchanging between water molecules in a protonation-deprotonation process. Both acids and bases catalyze hydrogen exchange and, even when at its slowest rate of exchange (at pH 7), the average residence time of a hydrogen atom is only about a millisecond. In the liquid state, water molecules are bound to each other by an average of three hydrogen bonds. Hydrogen bonds arise when a hydrogen that is covalently bound to an oxygen in one molecule of water nears another oxygen from another water molecule. The electrophilic oxygen atom "pulls" the hydrogen closer to itself. The end result is that the hydrogen is now shared (unequally) between the oxygen to which it is covalently bound and the electrophilic oxygen to which it is attracted (O-H···O). Each hydrogen bond has an average energy of 20 kJ/mol. This is much less than an O-H covalent bond, which is 460 kJ/mol. Even though an individual hydrogen bond is relatively weak, the large number of hydrogen bonds that exist in water which pull the molecules together have a significant role in giving water its special bulk properties. In ice, water molecules are highly organized with four hydrogen bonds. Liquid water is thought to be a combination of domains of molecules with 3-4 hydrogen bonds separated by domains with 2-3 hydrogen bonds, subject to constant turnover - the *flickering cluster model*.

This brief description of water is provided in order to give the insight that whenever a solid surface interacts with bulk water it is interacting with a soft matter structure, not simply a collection of individual molecules. Surface interactions with water must compete with a variety of internal interactions of liquid phase water: van der Waals forces, dipole interactions, hydrogen bonding and proton exchange.

molecule of water showing dipole

2 molecules showing hydrogen bond

ice - molecules of water with 4 hydrogen bonds

liquid water - flickering cluster model regions of molecules with 3-4 hydrogen bonds separated by regions with 2-3 hydrogen bonds (not shown: out of plane hydrogen bonds)

Wettability and Contact Angle

A surface is said to be wetted if a liquid spreads over the surface evenly without the formation of droplets. When the liquid is water and it spreads over the surface without the formation of droplets, the surface is said to be hydrophilic. In terms of energetics, this implies that the forces associated with the interaction of water with the surface are greater than the cohesive forces associated with bulk liquid water. Water droplets form on hydrophobic surfaces, implying that the cohesive forces associated with bulk water are greater than the forces associated with the interaction of water with the surface. Practically, hydrophobicity and hydrophilicity are relative terms. A simple quantitative method for defining the relative degree of interaction of a liquid with a solid surface is the contact angle of a liquid droplet on a solid substrate. If the contact angle of water is less than 30°, the surface is designated hydrophilic since the forces of interaction between water and the surface nearly equal the cohesive forces of bulk water and water does not cleanly drain from the surface. If water spreads over a surface and the contact angle at the spreading front edge of the water is less than 10°, the surface is often designated as superhydrophilic (provided that the surface is not absorbing the water, dissolving in the water or reacting with the water). On a hydrophobic surface, water forms distinct droplets. As the hydrophobicity increases, the contact angle of the droplets with the surface increases. Surfaces with contact angles greater than 90° are designated as hydrophobic. The theoretical maximum contact angle for water on a smooth surface is 120°. Micro-textured or micro-patterned surfaces with hydrophobic asperities can exhibit apparent contact angles exceeding 150° and are associated with superhydrophobicity and the "lotus effect".

Contact Angle of Water on
Smooth Surfaces

D	
	θ
heptadecafluorodecyltrimethoxysilane*	115°
(heptafluoroisopropoxy)propyl-	
trichlorosilane*	109-111°
poly(tetrafluoroethylene)	108-112°
poly(propylene)	108°
octadecyldimethylchlorosilane*	110°
octadecyltrichlorosilane*	102-109°
tris(trimethylsiloxy)-	1040
silylethyldimethylchlorosilane	104°
octyldimethylchlorosilane*	104°
dimethyldichlorosilane*	95-105°
butyldimethylchlorosilane*	100°
trimethylchlorosilane*	90-100°
poly(ethylene)	88-103°
poly(styrene)	94°
poly(chlorotrifluoroethylene)	90°
human skin	75-90°
diamond	87°
graphite	86°
silicon (etched)	86-88°
talc	50-55°
chitosan	80-81°
steel	70-75°
methacryloxypropyltrimethoxysilane	70°
gold, typical (see gold, clean)	66°
triethoxysilylpropoxy(triethylenoxy)-	04.00
dodecanoate*	61-2°
intestinal mucosa	50-60°
glycidoxypropyltrimethoxysilane*	49°
kaolin	42-46°
platinum	40°
silicon nitride	28-30°
silver iodide	17°
methoxy(polyethyleneoxy)propyl- trimethoxysilane*	15.5°
soda-lime glass	<15°
gold, clean	<10°
*Note: Contact angles for silanes refer to smooth	
NOTE: CONTACT ANGLES for Silanes refer to smooth	orn treated

Critical Surface Tension and Adhesion

While the contact angle of water on a substrate is a good indicator of the relative hydrophobicity or hydrophilicity of a substrate, it is not a good indicator for the wettability of the substrate by other liquids. The contact angle is given by Young's equation:

$$\gamma_{sv} - \gamma_{sl} = \gamma_{lv} \cdot \cos\theta_e$$

where γ_{sl} = interfacial surface tension, γ_{lv} = surface tension of liquid.

Critical surface tension is associated with the wettability or release properties of a solid. It serves as a better predictor of the behavior of a solid with a range of liquids.

Liquids with a surface tension below the critical surface tension (γ_c) of a substrate will wet the surface, i.e., show a contact angle of 0 ($\cos\theta_e = 1$). The critical surface tension is unique for any solid and is determined by plotting the cosine of the contact angles of liquids of different surface tensions and extrapolating to 1.

Hydrophilic behavior is generally observed by surfaces with critical surface tensions greater than 45 dynes/cm. As the critical surface tension increases, the expected decrease in contact angle is accompanied with stronger adsorptive behavior and with increased exotherms.

Hydrophobic behavior is generally observed by surfaces with critical surface tensions less than 35 dynes/cm. At first, the decrease in critical surface tension is associated with oleophilic behavior, i.e. the wetting of the surfaces by hydrocarbon oils. As the critical surface tensions decrease below 20 dynes/cm, the surfaces resist wetting by hydrocarbon oils and are considered oleophobic as well as hydrophobic.

In the reinforcement of thermosets and thermoplastics with glass fibers, one approach for optimizing reinforcement is to match the critical surface tension of the silylated glass surface to the surface tension of the polymer in its melt or uncured condition. This has been most helpful in resins with no obvious functionality such as polyethylene and polystyrene. Silane treatment has allowed control of thixotropic activity of silica and clays in paint and coating applications. Immobilization of cellular organelles, including mitochondria, chloroplasts, and microsomes, has been effected by treating silica with alkylsilanes of C_8 or greater substitution.

Critical surface tensions

	$\gamma_{\rm c}$
	mN/m
heneicosafluorododecyltrichlorosilane	6-7
heptadecafluorodecyltrichlorosilane	12.0
poly(tetrafluoroethylene)	18.5
octadecyltrichlorosilane	20-24
methyltrimethoxysilane	22.5
nonafluorohexyltrimethoxysilane	23.0
vinyltriethoxysilane	25
paraffin wax	25.5
ethyltrimethoxysilane	27.0
propyltrimethoxysilane	28.5
glass, soda-lime (wet)	30.0
poly(chlorotrifluoroethylene)	31.0
poly(propylene)	31.0
poly(propylene oxide)	32
polyethylene	33.0
trifluoropropyltrimethoxysilane	33.5
3-(2-aminoethyl)-aminopropyltrimethoxysilane	33.5
poly(styrene)	34
p-tolyltrimethoxysilane	34
cyanoethyltrimethoxysilane	34
aminopropyltriethoxysilane	35
acetoxypropyltrimethoxylsilane	37.5
polymethylmethacrylate	39
polyvinylchloride	39
phenyltrimethoxysilane	40.0
chloropropyltrimethoxysilane	40.5
mercaptopropyltrimethoxysilane	41
glycidoxypropyltrimethoxysilane	42.5
poly(ethyleneterephthalate)	43
poly(ethylene oxide)	43-45
copper (dry)	44
aluminum (dry)	45
iron (dry)	46
nylon 6/6	45-6
glass, soda-lime (dry)	47
silica, fused	78
titanium dioxide (anatase)	91
ferric oxide	107
tin oxide	111
Note: Critical surface tensions for silanes refer to smooth tr surfaces.	reated

How does a Silane Modify a Surface?

Most of the widely used organosilanes have one organic substituent and three hydrolyzable substituents. In the vast majority of surface treatment applications, the alkoxy groups of the trialkoxysilanes are hydrolyzed to form silanol-containing species. Reaction of these silanes involves four steps. Initially, hydrolysis of the three labile groups occurs. Condensation to oligomers follows. The oligomers then hydrogen bond with OH groups of the substrate. Finally, during drying or curing, a covalent linkage is formed with the substrate with concomitant loss of water. Although described sequentially, these reactions can occur simultaneously after the initial hydrolysis step. At the interface, there is usually only one bond from each silicon of the organosilane to the substrate surface. The two remaining silanol groups are present either in condensed or free form. The R group remains available for covalent reaction or physical interaction with other phases.

Silanes can modify surfaces under anhydrous conditions consistent with monolayer and vapor phase deposition requirements. Extended reaction times (4-12 hours) at elevated temperatures (50°-120°C) are typical. Of the alkoxysilanes, only methoxysilanes are effective without catalysis. The most effective silanes for vapor phase deposition are cyclic azasilanes.

Hydrolysis Considerations

Water for hydrolysis may come from several sources. It may be added, it may be present on the substrate surface, or it may come from the atmosphere. The degree of polymerization of the silanes is determined by the amount of water available and the organic substituent. If the silane is added to water and has low solubility, a high degree of polymerization is favored. Multiple organic substitution, particularly if phenyl or tertiary butyl groups are involved, favors formation of stable monomeric silanols.

The thickness of a polysiloxane layer is also determined by the concentration of the siloxane solution. Although a monolayer is generally desired, multilayer adsorption results from solutions customarily used. It has been calculated that deposition from a 0.25% silane solution onto glass could result in three to eight molecular layers. These multilayers could be either interconnected through a loose network structure, or intermixed, or both, and are, in fact, formed by most deposition techniques. The orientation of functional groups is generally horizontal, but not necessarily planar, on the surface of the substrate.

The formation of covalent bonds to the surface proceeds with a certain amount of reversibility. As water is removed, generally by heating to 120°C for 30 to 90 minutes or evacuation for 2 to 6 hours, bonds may form, break, and reform to relieve internal stress.

Hydrolytic Deposition of Silanes

B. Arkles, CHEMTECH, 7, 766, 1977

Anhydrous Deposition of Silanes

$$\begin{array}{c} R \\ H_{3}C-Si-CH_{3} \\ OCH_{3} \\ \\ + \\ OH \\ \hline \\ \Delta \quad - CH_{3}OH \\ \hline \\ R \\ H_{3}C-Si-CH_{3} \\ | \\ O \\ \hline \\ \end{array}$$

Selecting A Silane for Surface Modification - Inorganic Substrate Perspective

Factors influencing silane surface modification selection include:

Concentration of surface hydroxyl groups

Type of surface hydroxyl groups

Hydrolytic Stability of the bond formed

Physical dimensions of the substrate or substrate features

Surface modification is maximized when silanes react with the substrate surface and present the maximum number of accessible sites with appropriate surface energies. An additional consideration is the physical and chemical properties of the interphase region. The interphase can promote or detract from total system properties depending on its physical properties such as modulus or chemical properties such as water/hydroxyl content.

Hydroxyl-containing substrates vary widely in concentration and type of hydroxyl groups present. Freshly fused substrates stored under neutral conditions have a minimum number of hydroxyls. Hydrolytically derived oxides aged in moist air have significant amounts of physically adsorbed water which can interfere with coupling. Hydrogen bonded vicinal silanols react more readily with silane coupling agents, while isolated or free hydroxyls react reluctantly.

Silanes with three alkoxy groups are the usual starting point for substrate modification. These materials tend to deposit as polymeric films, effecting total coverage and maximizing the introduction of organic functionality. They are the primary materials utilized in composites, adhesives, sealants, and coatings. Limitations intrinsic in the utilization of a polylayer deposition are significant for nano-particles or nano-composites where the interphase dimensions generated by polylayer deposition may approach those of the substrate. Residual (non-condensed) hydroxyl groups from alkoxysilanes can also interfere in activity. Monoalkoxy-silanes provide a frequently used alternative for nano-featured substrates since deposition is limited to a monolayer.

If the hydrolytic stability of the oxane bond between the silane and the substrate is poor or the application is in an aggressive aqueous environment, dipodal silanes often exhibit substantial performance improvements. These materials form tighter networks and may offer up to 10^5x greater hydrolysis resistance making them particularly appropriate for primer applications.

Water droplets on a (heptadecafluoro-1,1,2,2-tetrahy-drodecyl)trimethoxysilane-treated silicon wafer exhibit high contact angles, indicative of the low surface energy. Surfaces are both hydrophobic and resist wetting by hydrocarbon oils. (water droplets contain dye for photographic purposes).

Silane Effectiveness on Inorganics

Estimates for Silane Loading on Siliceous Fillers

Average Particle Size	Amount of Silane (minimum of monolayer coverage)
<1 micron	1.5%
1-10 microns	1.0%
10-20 microns	0.75%
>100 microns	0.1% or less

Hydrophobic Silane Surface Treatments

Factors which contribute to the ability of an organosilane to generate a hydrophobic surface are its organic substitution, the extent of surface coverage, residual unreacted groups (both from the silane and the surface) and the distribution of the silane on the surface.

Aliphatic hydrocarbon substituents or fluorinated hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. Beyond the simple attribute that in order to generate a hydrophobic surface the organic substitution of the silane must be nonpolar, more subtle distinctions can be made. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. For non-polar entities, van der Waals interactions are predominant factors in interactions with water and such interactions compete with hydrogen bonding in ordering of water molecules. Van der Waals interactions for solid surfaces are primarily related to the instantaneous polarizability of the solid which is proportional to the dielectric constant or permittivity at the primary UV absorption frequency and the refractive index of the solid. Entities which present sterically closed structures that minimize van der Waals contact are more hydrophobic than open structures that allow van der Waals contact. Thus, in comparison to polyethylene, both polypropylene and polytetrafluoroethylene are more hydrophobic. Similarly methyl-substituted alkylsilanes and fluorinated alkylsilanes provide better hydrophobic surface treatments than linear alkyl silanes.

Surfaces to be rendered hydrophobic usually are polar with a distribution of hydrogen bonding sites. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Hydroxyl groups are the most common sites for hydrogen bonding. The hydrogens of hydroxyl groups can be eliminated by oxane bond formation with an organosilane. The effectiveness of a silane in reacting with hydroxyls impacts hydrophobic behavior not only by eliminating the hydroxyls as water adsorbing sites, but also by providing anchor points for the non-polar organic substitution of the silane which shields the polar substrates from further interaction with water.

Strategies for silane surface treatment depend on the population of hydroxyl groups and their accessibility for bonding. A simple conceptual case is the reaction of organosilanes to form a monolayer. If all hydroxyl groups are capped by the silanes and the surface is effectively shielded, a hydrophobic surface is achieved. Practically, not all of the hydroxyl groups may react leaving residual sites for hydrogen bonding. Further, there may not be enough anchor points on the surface to allow the organic substituents to effectively shield the substrate. Thus the substrate reactive groups of the silane, the conditions of deposition, the ability of the silane to form monomeric or polymeric layers and the nature of the organic substitution all play a role in rendering a surface hydrophobic. The minimum requirements for hydrophobicity with the economic restrictions for various applications further complicate selection.

complete coverage

incomplete hydroxyl reaction

few bonding opportunities

Hypothetical Trimethylsilylated Surfaces

Pyrogenic silica has 4.4-4.6 OH/nm². Typically less than 50% are reacted. Other substrates have fewer opportunities for reaction.

Superhydrophobicity and Oleophobicity

Hydrophobicity is frequently associated oleophilicity, the affinity of a substance for oils, since nonpolar organic substitution is often hydrocarbon in nature and shares structural similarities with many oils. hydrophobic and oleophilic effect can be differentiated and controlled. At critical surface tensions of 20-30 mN/m, surfaces are wetted by hydrocarbon oils and are water repellent. At critical surface tensions below 20, hydrocarbon oils no longer spread and the surfaces are both hydrophobic and oleophobic. The most oleophobic silane surface treatments have fluorinated long-chain alkyl silanes and methylated medium chain alkyl silanes.

Superhydrophobic surfaces are those surfaces that present apparent contact angles that exceed the theoretical limit for smooth surfaces, i.e. >120°. The most common examples of superhydrophobicity are associated with surfaces that are rough on a sub-micron scale and contact angle measurements are composites of solid surface asperities and air; denoted as the Cassie state. Perfectly hydrophobic surfaces (contact angles of 180°) have been prepared by hydrolytic deposition of methylchlorosilanes as microfibrillar structures.

Automotive side windows are treated with fluoroalkylsilanes to provide self-cleaning properties. Water beads remove soil as they are blown over the glass substrate during acceleration.

Hydrophobicity vs Water Permeability

Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete.

The methylsilicone phase separates in ethanol to form a covalently attached fibrillar network. Fiber diameter is ~20 nm. Ellipsometry indicates a film thickness of ~20 nm.

T. McCarthy, J. Am. Chem. Soc., 2006, 128, 9052.

Hydrophilic Silane Surface Treatments

The vast majority of surfaces are hydrophilic. Water is omnipresent in the environment, yet the precise nature of interaction of water with specific surfaces is largely unknown. Water adsorption may be uniform or in isolated patches. It may be driven by a number of different physical and chemical processes. The adsorption of water by a surface may be assisted or retarded by other adsorbents present in the environment. The purpose of applying a hydrophilic surface treatment is to control both the nature and extent of interaction of water with a surface.

The controlled interaction of water with substrates can offer various degrees of hydrophilicity ranging from physi-sorption to chemi-sorption and centers for ioninteraction. The utility of hydrophilic surfaces varies widely. Anti-fog coatings exploit high surface energies to flatten water droplets rather than allowing them to form light-scattering droplets. In biological systems hydrophilic surfaces can reduce nonspecific bonding of proteins. Hydrophilic coatings with hydrogen bonding sites allow formation of tightly adherent layers of water with high lubricity in biological systems and the ability to resist oil adsorption in anti-graffiti coatings. They can also be used to disperse particles in aqueous coatings and oil-in-water emulsions. Hydrophilic coatings with ionic sites form antistatic coatings, dye receptive surfaces and can generate conductive or electrophoretic pathways. Thick films can behave as polymeric electrolytes in battery and ion conduction applications.

In general, surfaces become more hydrophilic in the series: **non-polar < polar, no hydrogen-bonding < polar, hydrogen-bonding < hydroxylic < ionic.** The number of sites and the structure and density of the interphase area also have significant influence on hydrophilicity.

Much of the discussion of hydrophobicity centers around high contact angles and their measurement. As a corollary, low or 0° contact angles of water are associated with hydrophilicity, but practically the collection of consistent data is more difficult. Discriminating between surfaces with a 0° contact angle is impossible. The use of heat of immersion is a method that generates more consistent data for solid surfaces, provided the surface does not react with, dissolve or absorb the tested liquid. Another important consideration is whether the water adsorbed is "free" or "bound." Free water is water that is readily desorbed under conditions of less than 100% relative humidity. If water remains bound to a

Anti-fog coatings applied to one side of a visor can be prepared from combinations of polyalkylene oxide functional silanes and film-forming hydrophilic silanes.

Heats of Immersion in Water, mJ/m²

titanium dioxide	225-250
talc	220-260
aminopropyltriethoxysilane*	230-270
silicon dioxide	210-225
glass	200-205
vinyltris(methoxyethoxy)silane*	110-190
mercaptopropyltrimethoxysilane*	80-170
graphite	32-35
polytetrafluoroethylene	24-25

*Data for silane treated surfaces in this table is primarily from B. Marciniec et al, Colloid & Polymer Science, 261, 1435, 1983 recalculated for surface area.

Water Interaction with PEGylated Silanes

The most common strategy for non-hydroxylic polar modification of organic molecules is the incorporation of poleyethylene oxide units (PEG). The interaction of water with one, two and three PEG units incorporated into a silane is depicted.

than 100% relative humidity. If water remains bound to a substrate under conditions of less than 100% relative humidity, the surface is considered hygroscopic. Another description of hygroscopic water is a boundary layer of water adsorbed on a surface less than 200nm thick that cannot be removed without heating. A measure of the relative hygroscopic nature of surfaces is given by the water activity, the ratio of the fugacity, or escaping tendency, of water from a surface compared to the fugacity of pure water.

The hydrophilicity of a surface as measured or determined by contact angle is subject to interference by loosely bound oils and other contaminants. Heats of immersion and water activity measurements are less subject to this interference. Measurements of silane-modified surfaces demonstrate true modification of the intrinsic surface properties of substrates. If the immobilized hydrophilic layer is in fact a thin hydrogel film, then swelling ratios at equilibrium water absorbtion can provide useful comparative data.

Hydrophilic Silane Surface Treatments (continued)

Controlling hydrophilic interaction with silane surface treatments is accomplished by the selection of a silane with the appropriate hydrophilic substitution. The classes of substitution are:

- Polar, Non-Hydrogen Bonding
- Polar, Hydrogen-Bonding
- Hydroxylic
- · Ionic-Charged

Aortic stents are coated to promote hydrophilicity, coupling to polymers and drug delivery systems.

The selection of the class of hydrophilic subsitution is dependent on the application. If it is sufficient for water to spread evenly over a surface to form a thin film that washes away and dries off quickly without leaving 'drying spots', then a polar aprotic silane is preferred. If a coating is desired that reduces non-specific binding of proteins or other biofoulants, then a polar hydrogen-bonding material such as a polyether functional silane is preferred. A very different application for polar non-hydroxylic materials is thin film proton conduction electrolytes. Lubricious coatings are usually hydroxylic since they require a restrained adsorbed phase of water. Antistatic coatings are usually charged or charge-inducible as are ion-conductive coatings used in the construction of thin-film batteries. A combination of hydrophilicity and hydrophobicity may be a requirement in coatings which are used as primers or in selective adsorption applications such as chromatography. Formulation limitations may require that hydrophilicity is latent and becomes unmasked after application.

Factors affecting the intrinsic hydrolytic stability of silane treated surfaces are magnified when the water is drawn directly into the interface. Even pure silicon dioxide is ultimately soluble in water (at a level of 2-6ppm), but the kinetics, low concentration for saturation and phase separation, make this a negligible consideration in most applications. The equilibrium constant for the rupture of a Si-O-Si bond by water to two Si-OH bonds is estimated at 10^{-3} . Since at minimum 3 Si-O-Si bonds must be simultaneously broken under equilibrium conditions to dissociate an organosilane from a surface, in hydrophobic environments the long-term stability is a minor consideration. Depending on the conditions of exposure to water of a hydrophilic coating, the long-term stability can be an important consideration. Selection of a dipodal, polypodal or other network forming silane as the basis for inducing hydrophilicity or as a component in the hydrophilic surface treatment is often obligatory.

Range of Water Interaction with Surfaces

interaction	description	surface example	measurement - parameter
low	superhydrophobic oleophobic lipophobic oleophilic lipophilic hydrophobic	fluorocarbon	contact angle water-sliding angle critical surface tension
moderate	polar hydrophilic	polymer oxide surface	heat of immersion
	hygroscopic	polyhydroxylic	water activity
strong	hydrogel film		equilibrium water absorption swell

Reacting with the Substrate Leaving Groups

The reaction of an organofunctional silane with a surface bearing hydroxyl group results in a substitution reaction at silicon and the formation of the silvlated surface where the silicon is covalently attached to the surface via an oxygen linkage. This connection may be formed directly or in the presence of water through a reactive silanol intermediate. In general the reactivity of hydroxylated surfaces with organo-functional silanes decreases in the order: Si-NR₂ > Si-Cl > Si-NH-Si > Si-O₂CCH₃ > Si-OCH₃ > Si-OCH₂CH₃. An analysis of the relevant bond energies indicates that the formation of the Si-O-surface bond is the driving force for the reaction under dry and aprotic conditions. Secondary factors contributing to the reactivity of organofunctional silanes with a surface are the volatility of the byproducts, the ability of the byproduct to hydrogen bond with the hydroxyls on the surface, the ability of the byproduct to catalyze further reactions, e.g. HCl or acetic acid, and the steric bulk of the groups on the silicon atom.

Although they are not the most reactive organosilanes, the methoxy and ethoxysilanes are the most widely used organofunctional silanes for surface modification. The reasons for this include the fact that they are easily handled and the alcohol byproducts are non-corrosive and volatile. The methoxysilanes are capable of reacting with substrates under dry, aprotic conditions, while the less reactive ethoxysilanes require catalysis for suitable reactivity. The low toxicity of ethanol as a byproduct of the reaction favors the ethoxysilanes in many commercial applications. The vast majority of organofunctional silane surface treatments are performed under conditions in which water is a part of the reaction medium, either directly added or contributed by adsorbed water on the substrate or by atmospheric moisture.

Silane Requirements for Surface Coverage

Hydrolytic Deposition – creating a minimum uniform coverage

The majority of surface modifications are affected by the hydrolytic deposition of trialkoxysilanes. Specific Wetting Surface (SWS) is a value determined empirically for the amount of silane required to obtain minimum uniform multilayer coverage on a substrate.

amount of silane (g) = $\underline{\text{amount of substrate (g) x surface area of filler}}$ (m²/g) specific wetting surface

Bond Dissociation Energies					
Bond Dissociation Energy (kcal/mole)					
Me ₃ Si-NMe ₂ 98					
$Me_3Si-N(SiMe_3)_2$ 109					
Me ₃ Si-Cl 117					
Me ₃ Si-OMe 123					
Me ₃ Si-OEt 122					
Me ₃ Si-OSiMe ₃	136				

Common Leaving Groups					
Туре	Advantage	Disadvantage			
dimethylamine	reactive, volatile byproduct	toxic			
hydrogen chloride	reactive, volatile byproduct	corrosive			
silazane (NH ₃)	volatile	limited availability			
methoxy	moderate reactivity, neutral byproduct	moderate toxicity			
ethoxy	low toxicity	lower reactivity			

Surface Area of Common Substrates				
Type m²/g				
E-Glass Silica, ground	0.10-0.12 1-2			
Silica, diatomaceous 1-3.5				
Calcium silicate 2.6 Clay, kaolin 7				
Talc	7			
Silica, fumed 150-250				

Specific Wetting Surface (SWS) numbers are found throughout this brochure.

Monolayer Deposition

Monolayer deposition is a widely used term, but the definition of a monolayer is usually contextual. The simplest definition is that there is an attachment of a surface treatment molecule to every surface atom. However, coverage of this type is probably never the case. In general, monolayer coverage refers to the reaction of the surface treatment molecule with available hydroxyl groups on the surface, but this is also almost never achieved. For example, hydrated fumed silica has 4.4-4.6 –OH/nm². A high surface fumed silica has a surface area of 3.25 x 10²⁰ nm²/gram and thus 1.5 x 10²¹ hydroxyls. If this is divided by Avogadro's number, 6.02 x 10²³, 2.4 x10⁻³ moles of silane are required to provide coverage on 1 gram of fumed silica. Monolayer bonding of a silane with a molecular weight of 200 would deposit 0.5 g silane per gram of silica. In fact, most monolayer depositions of silanes result in about 10% of the calculated requirement, i.e. 0.5g silane per gram of fumed silica.

Special Topics

Dipodal Silanes

Dipodal silanes are silanes employed in surface modification that possess two silicon atoms capable of bonding to surfaces through oxane bonds. Functional dipodal silanes and combinations of non-functional dipodal silanes with functional silanes have significant impact on substrate bonding, hydrolytic stability and mechanical strength of many composites systems. They possess enabling activity in many coatings, particularly primer systems and aqueous immersion applications. The effect is thought to be a result of both the increased crosslink density of the interphase and a consequence of the fact that the resistance to hydrolysis of dipodal materials (with the ability to form six bonds to a substrate) is estimated at close to 100,000 times greater than conventional coupling agents (with the ability to form only three bonds to a substrate).

Dipodal vs Conventional Silanes

in acidic aqueous environments

Glass surfaces treated with: bridged dipodal silane SIB1824.0 1,8-bis (triethoxysilyl)octane; conventional silane SI06715.0 n-octyltriethoxysilane; pendant dipodal silane SIB1829.0 1,2-bis(trimethoxysilyl)decane; conventional silane, SID4632.0 n-decyltriethoxysilane.

Hydrophobic coatings applied to antennas inhibit the formation of adsorbed water layers which become dielectric layers that absorb signals and cause high losses. If the water is in beads, the energy will be slightly diffracted because the water droplets have dimensions much less than a wavelength at these frequencies.

Multilayer printed circuit boards use dipodal silanes to maintain the integrity of the bond between metal and resins by reducing interfacial water adsorption.

Hydrophobic Dipodal Silanes

$$(C_2H_5O)_3Si-CH_2CH_2-Si(OC_2H_3)_3\\SIB1817.0\\(C_2H_5O)_3Si-CH_2CH_2CH_2CH_2CH_2CH_2CH_2-Si(OC_2H_3)_3\\SIB1824.0\\(CH_3O)_3Si-CH_2CH_2\\CH_2\\CH_2-Si(OCH_3)_3\\Si($$

Hydrophilic Dipodal Silanes

Linker Length

An important factor in controlling the effectiveness and properties of a coupled system is the linker between the organic functionality and the silicon atom. The linker length imposes a number of physical property and reactivity limitations. The desirability of maintaining the reactive centers close to the substrate is most important in sensor applications, in heterogeneous catalysis, in fluorescent materials and in composite systems where the interfacing components are closely matched in modulus and coefficient of thermal expansion. On the other hand, inorganic surfaces can impose enormous steric constraints on the accessibility of organic functional groups in close proximity. If the linker length is long the functional group has greater mobility and can extend further from the inorganic substrate. This has important consequences if the functional group is expected to react with a single component in a multi-component organic or aqueous phase as found in homogeneous and phase transfer catalysis, biological diagnostics or liquid chromatography. Extended linker length is also important in oriented applications such as self-assembled monolayers (SAMs). The typical linker length is three carbon atoms, a consequence of the fact that the propyl group is both synthetically accessible and has good thermal stability.

Silanes with short linker length

$$\begin{array}{c|c} R - (CH_2)_n - Si \xrightarrow{X} \\ & X \end{array} \begin{array}{c} \text{hydrolyzable} \\ \text{groups} \end{array}$$
organofunctional group silicon atom

Effect of linker length on the separation of aromatic hydrocarbons

T. Den et al, in "Silanes, Surfaces, Interfaces" D. Leyden ed., 1986 p403.

Silanes with extended linker length

$$CH_{3}CH_{2}CH_{$$

Combining Polarity and Non-Polarity in Silane Surface Treatments

It may be desirable for a surface treatment to possess both polar groups and non-polar groups. The polarity may either embedded below a hydrocarbon tail (i.e. proximal to the surface) or tipped at the end of the hydrocarbon (i.e. proximal to the contacting phase).

Tipped

Embedded

Silane surface treatments with either tipped or embedded polarity provide an avenue to overcome traditional limitations imposed by surface energetics. They allow formation of surfaces that respond to solvent, electrical potential and thermal transitions by dramatically varying wettability. Silane treated substrates associated with a variety of multiphasic applications, including particle dispersion, reversed-phase HPLC and diagnostic assays can also take advantage of surfaces which combine polarity with non-polarity.

Comparative contact angle data of various silanes with polar substitution having degrees of hydrogen bonding and in which the polar groups are either embedded or are tipped along with hydrophobic and hydrophilic controls demonstrate interesting trends. Tipped polar silanes show higher contact angles with water than the embedded polar silanes, regardless of opportunities for hydrogen-bonding. The number of PEG units has relatively small impact on contact angle of the tipped silanes although an increase in number of PEG units does correlate to decreased water contact angle. PEG units embedded in silanes have a stronger effect on contact angle than PEG units in the tipped analogs. Hexadecane contact angle seems to be controlled by the number of carbon atoms in the carbon chain, although a step-change increase in contact angle is observed with C₁₈-PEG silanes.

Polarity is generally associated with hydrophilicity. Non-polarity is generally associated with hydrophobicity. In the case of surface treatments, it may be that the term hydrophobic ("water-hating" or "water fearing") suggests a too simplistic explanation. It appears not so much that hydrocarbons hate water, but that water hates hydrocarbons. Hydrocarbons appear indifferent to water. In the case of alkylsilanes tipped with polar groups, water molecular interaction proceeds until interaction with the hydrocarbon. In the cases of alkylsilanes in which polar groups are embedded near the surface, the hydrocarbon poses only a small barrier to the access of water to the polar groups.

Particle Dispersion Utilizing Silanes with Embedded Polarity

The incorporation of polar functionality into hydrocarbon substituted silanes can have dramatic effects on the dispersion of particles. Depending on the media, the appropriate mixed polarity surface treatment can improve dispersion, reduce viscosity or increase loading.

Contact Angles of Water and Hexadecane on Silane Layers with Tipped and Embedded Polar Groups

Silane	Contact angle (degrees)		
Hydrophobic control Dodecyltriethoxysilane (SID4632.0)		Water 100	Hexadecane 21
Hydrophilic tipped silanes (Methoxytriethyleneoxy)- trimethoxysilylundecanoate (SIM6493 Methoxyethoxyundecyltrichlorosilane (SIM6491.5)	.7)	74 73	7 5
Hydrophilic embedded silanes Triethoxysilylpropoxy(triethyleneoxy)- octadecanoate Triethoxysilylpropoxy(triethyleneoxy)- dodecanoate (SIT8186.3) Triethoxysilylpropoxy(hexaethyleneoxy)- octadecanoate Triethoxysilylpropoxy(hexaethyleneoxy)- dodecanoate		68 62 42 35	28 6 28 3
Hydrophilic control Methoxy(polyethyleneoxy) ₆₋₉ - propyltrimethoxysilane (SIM6492.7)		16	17

B. Arkles et al in "Silanes & Other Coupling Agents Vol 5, K. Mittal Ed. p.51 VSP (Brill) 2009.

Silane Surface Treated Particles – Effect on Rheology

Dispersion viscosity of different silane treated titanium dioxide pigment at 65% loading in mineral oil. DodecanoylPEG3silane (SIT8186.3) with embedded polarity provides lower viscosity than octyl-, dodecyl- and octadecylsilanes.

65 wgt% red iron oxide in Ethylhexylpalmitate

Dispersion viscosity of different silane treated iron oxide pigments at 65% loading in 2-ethylhexylpalmitate. DodecanoyIPEG3silane (SIT8186.3) with embedded polarity provides lower viscosity than alkyl, polyethyleneoxide, and aminopropyl substituted silanes.

Partition, Orientation and Self-Assembly in Bonded Phases

Chromatography

Octadecyl, cyanopropyl and branched tricocyl silanes provide bonded phases for liquid chromatography. Reverse-phase thin-layer chromatography can be accomplished by treating plates with dodecyltrichlorosilane.

Liquid Crystal Displays

The interphase can also impose orientation of the bulk phase. In liquid crystal displays, clarity and permanence of image are enhanced if the display can be oriented parallel or perpendicular to the substrate. The use of surfaces treated with octadecyl(3-(trimethoxysilyl)propyl) ammonium chloride (perpendicular) or methylaminopropyl-trimethoxysilane (parallel) has eliminated micromachining operations. The oriented crystalline domains often observed in reinforced nylons have also been attributed to orientation effects of the silane in the interphase.

Self-Assembled Monolayers (SAMs)

A Self-Assembled Monolayer (SAM) is a one molecule thick layer of material that bonds to a surface in an ordered way as a result of physical or chemical forces during deposition. Silanes can form SAMs by solution or vapor phase deposition processes. Most commonly, chlorosilanes or alkoxysilanes are used and once deposition occurs a chemical (oxane) bond forms with the surface rendering a permanent modification of the substrate. Applications for SAMs include micro-contact printing, soft lithography, dip-pen nanolithography, anti-stiction coatings and orientation layers involved in nanofabrication of MEMs, fluidic microassemblies, semiconductor sensors and memory devices.

Common long chain alkyl silanes used in the formation of SAMs are simple hydrocarbon, fluoroalkyl and end-group substituted silanes. Silanes with one hydrolyzable group maintain interphase structure after deposition by forming a single oxane bond with the substrate. Silanes with three hydrolyzable groups form

siloxane (silsesquioxane) polymers after deposition, bonding both with each other as well as the substrate. For non-oxide metal substrates, silyl hydrides may be used, reacting with the substrate by a dehydrogenative coupling.

The perpendicular orientation of silanes with C_{10} or greater length can be utilized in micro-contact printing and other soft lithography methods. Here the silane may effect a simple differential adsorption, or if functionalized have a direct sensor effect.

Normal Phase HPLC of Carboxylic Acids with a C₂₃-Silane Bonded Phase

Orientation effects of silanes for passive LCDs

F. Kahn., Appl. Phys. Lett. 22, 386, 1973

Micro-Contact Printing Using SAMs

Modification of Metal Substrates

The optimum performance of silanes is associated with siliceous substrates. While the use of silanes has been extended to metal substrates, both the effectiveness and strategies for bonding to these less-reactive substrates vary. Four approaches of bonding to metals have been used with differing degrees of success. In all cases, selecting a dipodal or polymeric silane is preferable to a conventional trialkoxy silane.

Metals that form hydrolytically stable surface oxides, e.g. aluminum, tin, titanium. These oxidized surfaces tend to have sufficient hydroxyl functionality to allow coupling under the same conditions applied to the siliceous substrates discussed earlier.

Metals that form hydrolytically or mechanically unstable surface oxides, e.g. iron, copper, zinc.

These oxidized surfaces tend to dissolve in water leading to progressive corrosion of the substrate or form a passivating oxide layer without mechanical strength. The successful strategies for coupling to these substrates typically involve two or more silanes. One silane is a chelating agent such as a diamine, polyamine or polycarboxylic acid. A second silane is selected which has a reactivity with the organic component and reacts with the first silane by co-condensation. If a functional dipodal or polymeric silane is not selected, 10-20% of a non-functional dipodal silane typically improves bond strength.

Metals that do not readily form oxides, e.g. nickel, gold and other precious metals. Bonding to these substrates requires coordinative bonding, typically a phosphine, sulfur (mercapto), or amine functional silane. A second silane is selected which has a reactivity with the organic component. If a functional dipodal or polymeric silane is not selected, 10-20% of a non-functional dipodal silane typically improves bond strength.

Octysilane adsorbed on gold

figure courtesy of M. Banaszak-Holl

Metals that form stable hydrides, e.g. titanium, zirconium, nickel. In a significant departure from traditional silane coupling agent chemistry, the ability of certain metals to form so-called amorphous alloys with hydrogen is exploited in an analogous chemistry in which hydride functional silanes adsorb and then coordinate with the surface of the metal. Most silanes of this class possess only simple hydrocarbon substitution such as octylsilane. However they do offer organic compatibility and serve to markedly change wet-out of the substrate. Both hydride functional silanes and treated metal substrates will liberate hydrogen in the presence of base or with certain precious metals such as platinum and associated precautions must be taken.

Coupling Agents for Metals*						
Metal	Class	Screening Candidates				
Copper	Amine	SSP-060	SIT8398.0			
Gold	Sulfur Phosphorus	SIT7908.0 SID4558.0	SIP6926.2 SIB1091.0			
Iron	Amine Sulfur	SIB1834.0 SIB1824.6	WSA-7011 SIM6476.0			
Tin	Amine	SIB1835.5				
Titanium	Epoxy Hydride	SIG5840.0 SIU9048.0	SIE6668.0			
Zinc	Amine Carboxylate	SSP-060 SIT8402.0	SIT8398.0 SIT8192.6			

^{*}These coupling agents are almost always used in conjunction with a second silane with organic reactivity or a dipodal silane.

Difficult Substrates

Silane coupling agents are generally recommended for applications in which an inorganic surface has hydroxyl groups and the hydroxyl groups can be converted to stable oxane bonds by reaction with the silane. Substrates such as calcium carbonate, copper and ferrous alloys, and high phosphate and sodium glasses are not recommended substrates for silane coupling agents. In cases where a more appropriate technology is not available a number of strategies have been devised which exploit the organic functionality, film-forming and crosslinking properties of silane coupling agents as the primary mechanism for substrate bonding in place of bonding through the silicon atom. These approaches frequently involve two or more coupling agents.

Calcium carbonate fillers and marble substrates do not form stable bonds with silane coupling agents. Applications of mixed silane systems containing a dipodal silane or tetraethoxysilane in combination with an organofunctional silane frequently increases adhesion. The adhesive mechanism is thought to be due to the low molecular weight and low surface energy of the silanes which allows them initially to spread to thin films and penetrate porous structures followed by the crosslinking which results in the formation of a silica-rich encapsulating network. The silica-rich encapsulating network is then susceptible to coupling chemistry comparable to siliceous substrates. Marble and calciferous substrates can also benefit from the inclusion of anhydride-functional silanes which, under reaction conditions, form dicarboxylates that can form salts with calcium ions.

Metals and many metal oxides can strongly adsorb silanes if a chelating functionality such as diamine or dicarboxylate is present. A second organofunctional silane with reactivity appropriate to the organic component must be present. Precious metals such as gold and rhodium form weak coordination bonds with phosphine and mercaptan functional silanes.

High phosphate and sodium content glasses are frequently the most frustrating substrates. The primary inorganic constituent is silica and would be expected to react readily with silane coupling agents. However alkali metals and phosphates not only do not form hydrolytically stable bonds with silicon, but, even worse, catalyze the rupture and redistribution of silicon-oxygen bonds. The first step in coupling with these substrates is the removal of ions from the surface by extraction with deionized water. Hydrophobic dipodal or multipodal silanes are usually used in combination with organofunctional silanes. In some cases polymeric silanes with multiple sites for interaction with the substrate are used. Some of these, such as the polyethylenimine functional silanes can couple to high sodium glasses in an aqueous environment.

Substrates with low concentrations of non-hydrogen bonded hydroxyl groups, high concentrations of calcium, alkali metals or phosphates pose challenges for silane coupling agents.

Removing Surface Impurities

Eliminating non-bonding metal ions such as sodium, potassium and calcium from the surface of substrates can be critical for stable bonds. Substrate selection can be essential. Colloidal silicas derived from tetraethoxysilane or ammonia sols perform far better than those derived from sodium sols. Bulk glass tends to concentrate impurities on the surface during fabrication. Although sodium concentrations derived from bulk analysis may seem acceptable, the surface concentration is frequently orders of magnitude higher. Surface impurities may be reduced by immersion in 5% hydrochloric acid for 4 hours, followed by a deionized water rinse, and then immersion in deionized water overnight followed by drying.

Oxides with high isoelectric points can adsorb carbon dioxide, forming carbonates. These can usually be removed by a high temperature vacuum bake.

Increasing Hydroxyl Concentration

Hydroxyl functionalization of bulk silica and glass may be increased by immersion in a 1:1 mixture of 50% aqueous sulfuric acid: 30% hydrogen peroxide for 30 minutes followed by rinses in D.I. water and methanol and then air drying. Alternately, if sodium ion contamination is not critical, boiling with 5% aqueous sodium peroxodisulfate followed by acetone rinse is recommended.

1. K. Shirai et al, J. Biomed. Mater. Res. 53, 204, 2000.

Catalyzing Reactions in Water-Free Environments

Hydroxyl groups without hydrogen bonding react slowly with methoxy silanes at room temperature. Ethoxy silanes are essentially unreactive. The methods for enhancing reactivity include transesterification catalysts and agents which increase the acidity of hydroxyl groups on the substrate by hydrogen bonding. Transesterification catalysts include tin compounds such as dibutyldiacetoxytin and titanates such as titanium isopropoxide. Incorporation of transesterification catalysts at 2-3 weight % of the silane effectively promotes reaction and deposition in many instances. Alternatively, amines can be premixed with solvents at 0.01-0.5 weight % based on substrate prior or concurrent to silane addition. Volatile primary amines such as butylamine can be used, but are not as effective as tertiary amines such as benzyldimethylamine or diamines such as ethylenediamine. The more effective amines, however, are more difficult to remove after reaction1.

1. S. Kanan et al, Langmuir, 18, 6623, 2002.

Hydroxylation by Water Plasma & Steam Oxidation

Various metals and metal oxides including silicon and silicon dioxide can achieve high surface concentrations of hydroxyl groups after exposure to H_2O/O_2 in high energy environments including steam at 1050° and water plasma¹.

 N. Alcanter et al, in "Fundamental & Applied Aspects of Chemically Modified Surfaces" ed. J. Blitz et al, 1999, Roy. Soc. Chem., p212.

Applying Silanes

Deposition from aqueous alcohol solutions is the most facile method for preparing silylated surfaces. A 95% ethanol-5% water solution is adjusted to pH 4.5-5.5 with acetic acid. Silane is added with stirring to yield a 2% final concentration. Five minutes should be allowed for hydrolysis and silanol formation. Large objects, e.g. glass plates, are dipped into the solution, agitated

Fig. 1 Reactor for slurry treatment of powders. Separate filtration and drying steps are required.

gently, and removed after 1-2 minutes. They are rinsed free of excess materials by dipping briefly in ethanol. Particles, e.g. fillers and supports, are silylated by stirring them in solution for 2-3 minutes and then decanting the solution. The particles are usually rinsed twice briefly with ethanol. Cure of the silane layer is for 5-10 mins at 110°C or 24 hours at room temperature (<60% relative humidity).

Deposition from aqueous solution is employed for most commercial fiberglass systems. The alkoxysilane is dissolved at 0.5-2.0% concentration in water. For less soluble silanes, 0.1% of a nonionic surfactant is added prior to the silane and an emulsion rather than a solution is prepared. The solution is adjusted to pH 5.5 with acetic acid. The solution is either sprayed onto the substrate or employed as a dip bath. Cure is at 110-120°C for 20-30 minutes.

Stability of aqueous silane solutions varies from 2-12 hours for the simple alkyl silanes. Poor solubility parameters limit the use of long chain alkyl and aromatic silanes by this method. Distilled water is not necessary, but water containing fluoride ions must be avoided.

Bulk deposition onto powders, e.g. filler treatment, is usually accomplished by a spray-on method. It assumes that the total amount of silane necessary is known and that sufficient adsorbed moisture is present on the filler to cause hydrolysis of the silane. The silane is prepared as a 25% solution in alcohol. The powder is placed in a high intensity solid mixer, e.g. twin cone mixer with

Fig. 2 Vacuum tumble dryers can be used for slurry treatment of powders.

intensifier. The methods are most effective. If the filler is dried in trays, care must be taken to avoid wicking or skinning of the top layer of treated material by adjusting heat and air flow.

Integral blend methods are used in composite formulations. In this method the silane is used as a simple additive. Composites can be prepared by the addition of alkoxysilanes to dry-blends of polymer and filler prior to compounding. Generally 0.2 to 1.0 weight percent of silane (of the total mix) is dispersed by spraying the silane in an alcohol carrier onto a preblend. The addition of the silane to non-dispersed filler is not desirable in this technique since it can lead to agglomeration. The mix is dry-blended briefly and then melt compounded. Vacuum devolatization of byproducts of silane reaction during melt compounding is necessary to achieve optimum properties. Properties are sometimes enhanced by adding 0.5-1.0% of tetrabutyl titanate or benzyldimethylamine to the silane prior to dispersal.

Anhydrous liquid phase deposition of chlorosilanes, methoxysilanes, aminosilanes and cyclic azasilanes is preferred for small particles and nano-featured substrates. Toluene, tetrahydrofuran or hydrocarbon solutions are prepared containing 5% silane. The mixture is refluxed for 12-24 hours with the substrate to be treated. It is washed with the solvent. The solvent is then removed by air or explosion-proof oven drying. No further cure is necessary. This reaction involves a direct nucleophilic displacement of the silane chlorines by the surface silanol. If monolayer deposition is desired, substrates should be predried at 150°C for 4 hours. Bulk deposition results if adsorbed water is present on the substrate. This method is cumbersome for large scale preparations and rigorous controls must be established to ensure reproducible results. More reproducible coverage is obtained with monochlorosilanes.

Chlorosilanes can also be deposited from alcohol solution. Anhydrous alcohols, particularly ethanol or isopropanol are preferred. The chlorosilane is added to the alcohol to yield a 2-5% solution. The chlorosilane reacts with the alcohol producing an alkoxysilane and HCl. Progress of the reaction is observed by halt of HCl evolution. Mild warming of the solution (30-40°C) promotes completion of the reaction. Part of the HCl reacts with the alcohol to produce small quantities of alkyl halide and water. The water causes formation of silanols from alkoxysilanes. The silanols condense on the substrate. Treated substrates are cured for 5-10 mins. at 110°C or allowed to stand 24 hours at room temperature.

Fig. 3 Twin-cone blenders with intensive mixing bars are used for bulk deposition of silanes onto powders.

Applying Silanes

Vapor Phase Deposition

Silanes can be applied to substrates under dry aprotic conditions by chemical vapor deposition methods. These methods favor monolayer deposition. Although under proper conditions almost all silanes can be applied to substrates in the vapor phase, those with vapor pressures >5 torr at 100°C have achieved the greatest number of commercial applications. In closed chamber designs, substrates are supported above or adjacent to a silane reservoir and the reservoir is heated to sufficient temperature to achieve 5mm vapor pressure. Alternatively, vacuum can be applied until silane evaporation is observed. In still another variation the silane can be prepared as a solution in toluene, and the toluene brought to reflux allowing sufficient silane to enter the vapor phase through partial pressure contribution. In general, substrate temperature should be maintained above 50° and below 120° to promote reaction. Cyclic azasilanes deposit the quickestusually less than 5 minutes. Amine functional silanes usually deposit rapidly (within 30 minutes) without a catalyst. The reaction of other silanes requires extended reaction times, usually 4-24 hours. The reaction can be promoted by addition of catalytic amounts of amines.

Spin-On

Spin-On applications can be made under hydrolytic conditions which favor maximum functionalization and polylayer deposition or dry conditions which favor monolayer deposition. For hydrolytic deposition 2-5% solutions are prepared (see deposition from aqueous alcohol). Spin speed is low, typically 500 rpm. Following spin-deposition a hold period of 3-15 minutes is required before rinse solvent. Dry deposition employs solvent solutions such as methoxypropanol or ethyleneglycol monoacetate (EGMA). Aprotic systems utilize toluene or THF. Silane solutions are applied at low speed under a nitrogen purge. If strict monolayer deposition is preferred, the substrate should be heated to 50°. In some protocols, limited polylayer formation is induced by spinning under an atmospheric ambient with 55% relative humidity.

Spray application

Formulations for spray applications vary widely depending on end-use. They involve alcohol solutions and continuously hydrolyzed aqueous solutions employed in architectural and masonry applications. The continuous hydrolysis is effected by feeding mixtures of silane containing an acid catalyst such as acetic acid into a water stream by means of a venturi (aspirator). Stable aqueous solutions (see water-borne silanes), mixtures of silanes with limited stability (4-8 hours) and emulsions are utilized in textile and fiberglass applications. Complex mixtures with polyvinyl acetates or polyesters enter into the latter applications as sizing formulations.

Figure 5. Spin-coater for deposition on wafers.

Figure 6.
Spray
application
of silanes
on large
structures.

Figure 7.
Spray & contact roller application of silanes on fiberglass.

Biomimetic Silane Surface Treatments

In addition to the direct metabolic and structural roles played by many biomolecules, they can also be involved in control of *in vivo* hydrophilic-lipophilic balance and specific adsorptive interactions with other biomolecules. Biomimetic silanes offer an opportunity to modify surfaces to impart a desired level of hydrophilicity and control biomolecule adsorption.

Alkylphosphonic Acids

Alkylphosphonic acids are utilized as hydrophobic coatings for a variety of non-siliceous, native oxide surfaces of metals such as iron, steel, tin, aluminum and copper. Alkylphosphonic acids can react under ambient conditions to form adherent, alkane chain ordered films. They have advantages over alkylsilanes when a metal-oxide substrate does not form a hydrolytically stable silicon-oxygenmetal bond. Alkylphosphonic acids are generally deposited from dilute solutions (0.25-0.50 wgt %) in moderately polar solvents such as toluene, tetrahydrofuran and ethanol. The deposition results in self-assembled monolayers (SAMs) in which it is generally considered that two direct bonds are formed with the surface through oxygen-metal linkages and the third remaining oxygen is coordinated to the surface.

For further information on alkylphosphonic acids, see Gelest Metal-Organics Catalog.

Hydrophobic Silane Selection Guide

Hydrophobic silanes employed in surface moodification form the following major categories:

Methyl-Silanes	22
Linear Alkyl-Silanes	24
Branched Alkyl-Silanes	26
Aromatic-Silanes2	28
Fluorinated Alkyl-Silanes	30
Dialkyl-Silanes 3	30

Methyl-Silanes very hydrophobic, hydrolysates stable to 425°C, acceptable performance to 600°C reported, volatile

3 Hydrolyzable Groups

Hydrolyzable Groups	Product Code	Product Name
chloro methoxy ethoxy propoxy methoxyalkoxy acetoxy dimethylamine other amine silazane (NH) oxime	SIM6520.0 SIM6560.0 SIM6555.0 SIM6579.0 SIM6585.0 SIM6519.0 SIT8712.0 SIT8710.0	methyltrichlorosilane methyltrimethoxysilane methyltriethoxysilane methyltri-n-propoxysilane methyltris(methoxyethoxy)silane methyltriacetoxysilane tris(dimethylamino)methylsilane tris(cyclohexylamino)methylsilane methyltris(methylethylketoximino)silane

Methyl-SiloxanylSilanes

3 or more Hydrolyzable Groups

	Hydrolyzable Groups	Product Code	Product Name	
2 silicon atom	compounds			
	chloro ethoxy acetoxy	SIT8572.6 SIT7095.0	trimethylsiloxytrichlorosilane tetraethoxy-1,3-dimethyldisiloxane	
3 silicon atom	compounds			
	chloro methoxy ethoxy chloro			
oligomeric pol	ysiloxanes			
	chloro methoxy ethoxy amine/silazane silanol selected specialties			
		SID4236.0	dimethyltetramethoxydisiloxane	

2 Hydrolyzable Groups

1 Hydrolyzable Group

Product Code	Product Name	Product Code	Product Name
SID4120.0 SID4123.0 SID4121.0	dimethyldichlorosilane dimethyldimethoxysilane dimethyldiethoxysilane	SIT8510.0 SIT8566.0 SIT8515.0 SIT8568.0 SIM6492.8	trimethylchlorosilane trimethylmethoxysilane trimethylethoxysilane trimethyl-n-propoxysilane methoxypropoxytrimethylsilane
SID4076.0 SIB1072.0 SIB1068.0 SIH6102.0	dimethyldiacetoxysilane bis(dimethylamino)dimethylsilane bis(diethylamino)dimethylsilane hexamethylcyclotrisilazane	SIA0110.0 SID3605.0 SID3398.0 SIH6110.0	acetoxytrimethylsilane dimethylaminotrimethylsilane diethylaminotrimethylsilane hexamethyldisilazane

2 Hydrolyzable Groups

1 Hydrolyzable Group

Product Code	Product Name	Product Code	Product Name
SID3372.0 SIT7534.0	dichlorotetramethyldisiloxane tetramethyldiethoxydisiloxane	SIP6717.0	pentamethylacetoxydisiloxane
SID3360.0 SID3394.0 SIB1837.0	dichlorohexamethyltrisiloxane 1,5-diethoxyhexamethyltrisiloxane bis(trimethylsiloxy)dichlorosilane	SIB1843.0	bis(trimethylsiloxy)methylmethoxysilane
DMS-K05 DMS-XM11 DMS-XE11 DMS-N05 DMS-S12	chlorine terminated polydimethylsiloxane methoxy terminated polydimethylsiloxane ethoxy terminated polydimethylsiloxane dimethylamine terminated polydimethylsiloxane silanol terminated polydimethylsiloxane		Space Shuttle tiles are treated with dimethylethoxysilane to reduce water absorption.
		SID4125.0 SIT8719.5	dimethylethoxysilane [tris(trimethylsiloxy)silylethyl]dimethylchlorosilane

Hydrophobic Silane Selection Guide

Linear Alkyl-Silanes

3 Hydrolyzable Groups

C₂ hydrophob	ic, treatment for microporous mineral p chloro methoxy ethoxy	SIE4901.0	ethyltrichlorosilane
_	methoxy		ethyltrichlorosilane
C ₃ hydrophob	acetoxy ic, treatment for microporous mineral p	SIE4901.4 SIE4901.2 SIE4899.0 owders used as fillers for plastics	ethyltrimethoxysilane ethyltriethoxysilane ethyltriacetoxysilane
•	chloro methoxy ethoxy amine/silazane	SIP6915.0 SIP6918.0 SIP6917.0	propyltrichlorosilane propyltrimethoxysilane propyltriethoxysilane
C₄ moderate h	ydrophobicity, penetrates microporous	structures, minimal organic compatibility	
	chloro methoxy ethoxy amine/silazane	SIB1982.0 SIB1988.0 SIB1986.0	n-butyltrichlorosilane n-butyltrimethoxysilane n-butyltriethoxysilane
C ₅ moderate h	ydrophobicity with minimal organic cor		
	chloro ethoxy	SIP6720.0 SIP6720.2	pentyltrichlorosilane pentyltriethoxysilane
C ₆ moderate h	ydrophobicity with moderate organic co	ompatibility	
	chloro methoxy ethoxy	SIH6167.0 SIH6168.5 SIH6167.5	hexyltrichlorosilane hexyltrimethoxysilane hexyltriethoxysilane
C₇ moderate h	ydrophobicity with moderate organic co		hard III ishlama ilaa
C ₈ hydrophob	chloro ic with moderate organic compatibility -	SIH5846.0	heptyltrichlorosilane
•	chloro methoxy ethoxy amine silazane (NH)	SI06713.0 SI06715.5 SI06715.0	octyltrichlorosilane octyltrimethoxysilane octyltriethoxysilane
C ₁₀ hydrophob	ic, concentrates on surface of micropor		
C hydrophob	chloro ethoxy	SID2663.0 SID2665.0	decyltrichlorosilane decyltriethoxysilane
C ₁₁ hydrophob	ic, concentrates on surface of micropor chloro	SIU9050.0	undecyltrichlorosilane
C ₁₂ hydrophob	ic, concentrates on surface of micropor		undodytatomoroditatio
	chloro ethoxy	SID4630.0 SID4632.0	dodecyltrichlorosilane dodecyltriethoxysilane
C₁₄ hydrophob	ic, concentrates on surface of micropor		
C ₁₆ forms hydr	chloro ophobic and oleophilic coatings, liquid	SIT7093.0	tetradecyltrichlorosilane
	chloro methoxy ethoxy	SIH5920.0 SIH5925.0 SIH5922.0	hexadecyltrichlorosilane hexadecyltrimethoxysilane hexadecyltriethoxysilane
C ₁₈ forms hydr		g full miscibility with parafinic materials,	
	chloro methoxy ethoxy amine	SI06640.0 SI06645.0 SI06642.0	octadecyltrichlorosilane octadecyltrimethoxysilane octadecyltriethoxysilane
	proprietary	SIS6952.0/PPI-GC18	Siliclad®/Glassclad® 18
C ₂₀ forms hydr	ophobic and oleophilic coatings, solid a chloro	t room temperature SIE4661.0	eicosyltrichlorosilane
C ₂₀₋₂₄ forms hydr	ophobic and oleophilic coatings, solid a		GIGGSYTHIGHIGHGSHAHE
	chloro ethoxy	SID4621.0 SID4622.09	docosyltrichlorosilane blend docosyltriethoxysilane blend
C ₂₆ -C ₃₄ forms hydr	ophobic and oleophilic coatings, solid a	•	
	chloro	SIT8048.0	triacontyltrichlorosilane blend

2 Hydrolyza Product Code	ble Groups Product Name	1 Hydrolyz Product Code	zable Group Product Name	ı
SIE4896.0	ethylmethyldichlorosilane	SIE4892.0	ethyldimethylchlorosilane	
SIP6912.0 SIP6914.0	propylmethyldichlorosilane propylmethyldimethoxysilane	SIP6910.0 SIP6911.0	propyldimethylchlorosilane propyldimethylmethoxysilane	
		SID4591.0	dipropyltetramethyldisilazane	
		SIB1934.0	n-butyldimethylchlorosilane	
		SIB1937.0	n-butyldimethyl(dimethylamino)silane	Long chain alkylsilanes are processing additives for crosslinked polyethylene
				(XLPE) used in wire and cable.
SIH6165.6	hexylmethyldichlorosilane			S S S S S S S S S S S S S S S S S S S
SIH5845.0	heptylmethyldichlorosilane			OR HAM OR
SI06712.0	octylmethyldichlorosilane	SI06711.0	octyldimethylchlorosilane	on Litter OR GAS COLUMB
SI06712.2	octylmethyldiethoxysilane	SI06711.1 SI06711.3 SID4404.0	octyldimethylmethoxysilane octyldimethyl(dimethylamino)silane dioctyltetramethyldisilazane	
SID2662.0	decylmethyldichlorosilane	SID2660.0	decyldimethylchlorosilane	Surface conductivity of
				glass substrates is reduced by application of hydropho-
SID4628.0 SID4629.0	dodecylmethyldichlorosilane dodecylmethyldiethoxysilane	SID4627.0	dodecyldimethylchlorosilane	bic coatings. Surface arc-tracking is eliminated on fluorescent light bulbs.
				Control
SI06625.0 SI06629.0	octadecylmethyldichlorosilane octadecylmethyldimethoxysilane	SI06615.0 SI06618.0	octadecyldimethylchlorosilane octadecyldimethylmethoxysilane	Glassclad
S106627.0	octadecylmethyldiethoxysilane	SI06617.0	octadecyldimethyl(dimethylamino)silane	
SID4620.0	docosylmethyldichlorosilane blend			
		SIT8045.0	triacontyldimethylchlorosilane blend	

Hydrophobic Silane Selection Guide

Branched and Cyclic Alkyl-Silanes

3 Hydrolyzable Groups

		iyaroiyzabio aroapo		
	Hydrolyzable Groups	Product Code	Product Name	
C_3				
	chloro			
C ₄				
	chloro methoxy	SII6453.0 SII6453.7	isobutyltrichlorosilane isobutyltrimethoxysilane	
	ethoxy	SII6453.5	isobutyltriethoxysilane	
	chloro	SIB1985.0	t-butyltrichlorosilane	
C ₅				
	chloro	SIC2555.0	cyclopentyltrichlorosilane	
	methoxy	SIC2557.0	cyclopentyltrimethoxysilane	
C ₆				
	chloro chloro	SID4069.0 SIT7906.6	(3,3-dimethylbutyl)trichlorosilane thexyltrichlorosilane	
	chloro	SIC2480.0	cyclohexyltrichlorosilane	
	methoxy	SIC2482.0	cyclohexyltrimethoxysilane	
C ₇	norbornene			
	chloro	SIB0997.0	bicycloheptyltrichlorosilane	
•	chloro	SIC2470.0	(cyclohexylmethyl)trichlorosilane	
C ₈				
	chloro	SII6457.0 SII6458.0	isooctyltrichlorosilane isooctyltrimethoxysilane	
	methoxy ethoxy	SII6453.5	isooctyltriiethoxysilane	
	chloro	SIC2490.0	cyclooctyltrichlorosilane	
C ₁₀			cy coordy and control of the control	
10				
C ₁₂				
^		SIA0325.0	adamantylethyltrichlorosilane	
C ₁₆		0.170.400.4	- 6111	
		SIT8162.4	7-(trichlorosilylmethyl)pentadecane	
C ₁₈	silahydrocarbon	0104404.5	(d' en est desemble de la Nedle de la	
^	chloro	SID4401.5	(di-n-octylmethylsilyl)ethyltrichlorosilane	
C ₂₄	ablana			
0	chloro			
C ₂₈	ablava	CIT04C0 0	10 /brighlowskih droeth district	
	chloro	SIT8162.0	13-(trichlorosilylmethyl)heptacosane	

2 Hyd Product Co	rolyzable Groups ode Product Name	1 Hydroly Product Code	zable Group Product Name
0110.400.0	Security described a Palabase State	01104000	i de la constanta de la consta
SII6463.0	isopropylmethyldichlorosilane	SII6462.0	isopropyldimethylchlorosilane
SII6452.8	isobutylmethyldimethoxysilane	SII6452.5	isobutyldimethylchlorosilane
SIB1972.2	t-butylmethyldichlorosilane	SIB1935.0	t-butyldimethylchlorosilane
SIC2468.0 SIC2469.0	cyclohexylmethyldichlorosilane cyclohexylmethyldimethoxysilan	SID4065.0 SIT7906.0 SIC2465.0	(3,3-dimethylbutyl)dimethylchlorosilane thexyldimethylchlorosilane cyclohexyldimethylchlorosilane
		SIB0994.0	bicycloheptyldimethylchlorosilane
		SII6456.6	isooctyldimethylchlorosilane
		SID4074.0	(dimethylchlorosilyl)methylpinane
		SID4401.0	(di-n-octylmethylsilyl)ethyldimethylchlorosilane
		SIC2266.5	11-(chlorodimethylsilylmethyl)tricosane
		SIC2266.0	13-(chlorodimethylsilylmethyl)heptacosane

Isobutyltriethoxysilane solutions in ethanol are applied by spray to protect architecture.

Hydrophobic Silane Selection Guide

Phenyl- and Phenylalkyl-Silanes

3 H	vdroly	<i>yzable</i>	Groups
	, ,		

	O I	iyardiyzabic ardapa	
	Hydrolyzable Groups	Product Code	Product Name
spacer atoms = 0	Moderate hydrophobicity	, hydrolysates stable to 325° C; l	JV, radiation resistant
•	chloro	SIP6810.0	phenyltrichlorosilane
	methoxy	SIP6822.0	phenyltrimethoxysilane
	ethoxy	SIP6821.0	phenyltriethoxysilane
	acetoxy	SIP6790.0	phenyltriacetoxysilane
	oxime/amine	SIP6826.5	phenyltris(methylethylketoximino)silane
spacer atoms = 1	OXIIIIe/allillile	311 0020.3	prierryturs(metriyletriylketoxirmino/silarie
spacer atoms = 1	obloro	CID0070 0	hanzultriahlaraailana
	chloro	SIB0970.0	benzyltrichlorosilane
	ethoxy	SIB0971.0	benzyltriethoxysilane
	chloro	SIP6813.0	1-phenyl-1-trichlorosilylbutane
spacer atoms = 2	More hydrophobic, acid		
	chloro	SIP6722.0	phenethyltrichlorosilane
	methoxy	SIP6722.6	phenethyltrimethoxysilane
	amine/silazane		
spacer atoms = 3			
	chloro	SIP6744.6	(3-phenylpropyl)trichlorosilane
spacer atoms = 4			(, , , , , , , , , , , , , , , , , , ,
	chloro	SIP6724.9	4-phenylbutyltrichlorosilane
	chloro	SIP6723.3	phenoxypropyltrichlorosilane
spacer atoms > 4	Cilioto	011 07 20.0	phonoxypropylationioroonalio
ορασσι ατοπιο > 4	chloro	SIP6736.4	phenoxyundecyltrichlorosilane
	chloro	SIP6723.4	
	CHIOTO	3170723.4	phenylhexyltrichlorosilane
Cubatitutad	Phonyl and Phony	Iollad Cilonoo	
Substituted	Phenyl- and Pheny	iaikyi-Siiaries	
spacer atoms = 0	More hydrophobic than p	phenyl, peroxide crosslinkable	
	chloro	SIT8040.0	p-tolyltrichlorosilane
	methoxy	SIT8042.0	p-tolyltrimethoxysilane
spacer atoms = 2	Greater compatibility wit	h styrenics, acrylics	
	methyl/chloro	. , , ,	
	ethyl/methoxy	SIE4897.5	ethylphenethyltrimethoxysilane
	t-butyl/chloro	SIB1973.0	p-(t-butyl)phenethyltrichlorosilane
anger stems 2	t-buty//cilioro	3101973.0	p-(t-buty)/prienethyltheriorosilane
spacer atoms = 3	alalana	CIMC 400 F	O /o mashbara mbamal\muamalbiishlamasilama
	chloro	SIM6492.5	3-(p-methoxyphenyl)propyltrichlorosilane
Nonthyl Cil-	200 5		
Napthyl-Sila	nes Form high refractive inde	ex coatings	
	methoxy	SIN6597.0	1-napthyltrimethoxysilane
	chloro	SIN6596.0	(1-napthylmethyl)trichlorosilane
		00000.0	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Specialty Ar	omatic- Silanes		
spacer atoms = 0			
	chloro		
spacer atoms = 4			
	chloro		
	onioro		

2 Hydro	olyzable Groups	1 Hydrolyza	able Group
Product Code	Product Name	Product Code	Product Name
0100700		0100700.0	
SIP6738.0 SIP6740.0	phenylmethyldichlorosilane phenylmethyldimethoxysilane	SIP6728.0	phenyldimethylchlorosilane
SIP6739.0	phenylmethyldiethoxysilane	SIP6728.4	phenyldimethylethoxysilane
SIP6736.8	phenylmethylbis(dimethylamino)silane		
SIP6738.5	1-phenyl-1-methyldichlorosilylbutane	SIB0962.0	benzyldimethylchlorosilane
	, , , , ,		,
SIP6721.5	phenethylmethyldichlorosilane	SP6721.0	phenethyldimethylchlorosilane
	F	0.0.2	,
SIM6512.5	(2-methyl-2-phenethyl) methydlichlorosilane	SIP6721.2	phenethyldimethyl(dimethylamino)silane
SIP6744.0	(3-phenylpropyl)methyldichlorosilane	SIP6743.0	(3-phenylpropyl)dimethylchlorosilane
311 07 44.0	(o-prientylpropyr)methyldichloroshane	311 07 43.0	(3-phenyipropyr)umetnyichiorosiiane
SIP6724.8	4-phenylbutylmethyldichlorosilane	SIP6724.7	4-phenylbutyldimethylchlorosilane
SIP6723.25	phenoxypropylmethyldichlorosilane	SIP6723.2	phenoxypropyldimethylchlorosilane
		SIP6736.3	(6-phenylhexyl)dimethylchlorosilane
SIT8035.0	p-tolylmethydichlorosilane	SIT8030.0	p-tolyldimethylchlorosilane
SIM6511.0	(p-methylphenethyl)methyldichlorosilane		
311V10311.0	(p-methylphenethyl)methyldicinoroshane		
		SIB1972.5	p-(t-butyl)phenethyldimethylchlorosilane
SIM6492.4	3-(p-methoxyphenyl)propylmethyldichlorosilane		
311010492.4	5-(p-methoxyphenyr)propymethyldichlorosilane		
		SIP6723.0	m-phenoxyphenyldimethylchlorosilane
			F
		SIN6598.0	p-nonylphenoxypropyldimethylchlorosilane

Hydrophobic Silane Selection Guide

Fluorinated Alkyl-Silanes - linear

	3 Hydrolyzable Grou	ıps			
Hydrolyzable Groups	Product Code	Product Nam	е		
Moderately polar hydrophobic	coating				
chloro	SIT8371.0	(3,3,3-trifluoropro	ppyl)trichlorosilane		
	SIT8372.0	(3,3,3-trifluoropro	ppyl)trimethoxysilane		
	SINGSO7 G	nonafluorohovultr	ichlorocilano		
		nonafluorohexyltr	imethoxysilane		
ethoxy	SIN6597.65	nonafluorohexyltr	iethoxysilane		
		nonafluorohexyltr	is(dimethylamino)silane		
			,2,2-tetrahydrooctyl)trichlorosilane		
•			,2,2-tetrahydrooctyl)trimethoxysilane ,2,2-tetrahydrooctyl)triethoxysilane		
*		(tiluecandoro-1,1	,2,2-16114119411006191711161110793114116		
		(hentadecafluoro-	1,1,2,2-tetrahydrodecyl)trichlorosilane		
			1,1,2,2-tetrahydrodecyl)trimethoxysiland		
	SIH5841.2		1,1,2,2-tetrahydrodecyl)triethoxysilane		
		, , , , , , , , , , , , , , , , , , ,			
chloro	SIH5840.25	heneicocyl-1,1,2,2	2-tetrahydrodecyltrichlorosilane		
Alkyl-Silanes -	· branched				
chloro	SIH5842.0	heptafluoroisopro	ppoxytrichlorosilane		
methoxy	SIH5842.2	heptafluoroisopro	ppoxytrimethoxysilane		
chloro	SIB1706.0	bis(nonafluorohe	xyldimethylsiloxy)methyl-		
		silylethyldimethyl	chlorosilane		
chloro	SIT8176.3	tridecafluoro-2-(t	tridecafluoro-2-(tridecafluorohexyl)decyltrichlorosilane		
noc					
iles	0.11111.1 0				
Nort Ondrov		•	Duradurat Nama		
	Hydrolyzable Groups	Product Code	Product Name		
Už	chloro	SID3403 0	diathyldichlorosilana		
			diethyldichlorosilane diethyldiethoxysilane		
Go	Culony	0150 10 1.0	ulotify allotifory offario		
	chloro	SID3537 0	diisopropyldichlorosilane		
			diisopropyldimethoxysilane		
	,	•	1 17 7		
$C_\mathtt{A}$					
C ₄	chloro	SID3203.0	di-n-butvldichlorosilane		
C ₄	chloro methoxy	SID3203.0 SID3214.0	di-n-butyldichlorosilane di-n-butyldimethoxysilane		
C ₄	methoxy methoxy	SID3214.0 SID3530.0	di-n-butyldimethoxysilane diisobutyldimethoxysilane		
	methoxy	SID3214.0	di-n-butyldimethoxysilane		
$\mathtt{C_4}$	methoxy methoxy ethoxy	SID3214.0 SID3530.0 SID3528.0	di-n-butyldimethoxysilane diisobutyldimethoxysilane diisobutyldiethoxysilane		
C_3	methoxy methoxy	SID3214.0 SID3530.0	di-n-butyldimethoxysilane diisobutyldimethoxysilane		
	methoxy methoxy ethoxy	SID3214.0 SID3530.0 SID3528.0	di-n-butyldimethoxysilane diisobutyldimethoxysilane diisobutyldiethoxysilane		
	Moderately polar hydrophobic chloro methoxy amine/silazane Hydrophobic films chloro methoxy ethoxy amino/silazane Hydrophobic, oleophobic films chloro methoxy ethoxy Forms oleophobic films with echloro methoxy ethoxy Forms oleophobic films with echloro methoxy ethoxy chloro	Hydrolyzable Groups Product Code Moderately polar hydrophobic coating chloro SIT8371.0 methoxy SIT8372.0 amine/silazane Hydrophobic films chloro SIN6597.6 methoxy SIN6597.7 ethoxy SIN6597.4 Hydrophobic, oleophobic films chloro SIT8174.0 methoxy SIT8176.0 ethoxy SIT8175.0 Forms oleophobic films with extremely low surface energy chloro SIH5841.0 methoxy SIH5841.5 ethoxy SIH5841.2 chloro SIH5840.25 Alkyl-Silanes - branched chloro SIH5842.0 methoxy SIH5842.2 chloro SIB1706.0 chloro SIT8176.3 Pes 2 Hydrolyzable Groups C2 chloro ethoxy C3 chloro ethoxy	A Hydrolyzable Groups		

 C_6

C₆

C₈

chloro

chloro

chloro

methoxy

SID3510.0

SID3382.0

SID4400.0

SID4400.4

di-n-hexyldichlorosilane

di-n-octyldichlorosilane

di-n-octyldimethoxysilane

dicyclohexyldichlorosilane

•	2 Hydrolyzable Groups Product Code Product Name		ole Group Product Name		
SIT8369.0 SIT8370.0	(3,3,3-trifluoropropyl)methyldichlorosilane (3,3,3-trifluoropropyl)methyldimethoxysilane	SIT8364.0	(3,3,3-trifluoropropyl)dimethylchlorosilane		
		SIB1828.4	bis(trifluoropropyl)tetramethyldisilazane		
SIN6597.5	nonafluorohexylmethyldichlorosilane	SIN6597.3	nonafluorohexyldimethylchlorosilane		
		SIN6597.4			
SIT8172.0	(tridecafluoro-1,1,2,2-tetrahydrooctyl)methyldichlorosilane	SIT8170.0	(tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane		
SH5840.6	(heptadecafluoro-1,1,2,2-tetrahydrodecyl)methyldichlorosilane	SIH5840.4	(heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane		

Pigments treated with hydrophobic silanes resist agglomeration in highly polar vehicle and film-forming compositions such as those used in nail polish.

Hydrophobic Silane Properties

Conventional Surface Bonding

	name			MW	bp/mm (r	np)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{_{\scriptscriptstyle 20}}$
O CH₃ CH₃COŞi−CH₃	SIA0110.0 ACETOXYTRIMETHYLSILAN O-TRIMETHYLSILYL ACETATE	E		132.23 Flashpoint: 4°0	103-4 C (39°F)	(-32)	0.891	1.3890
CH ₃	$C_5H_{12}O_2Si$ Vapor pressure, 30°: 35							
	HYDROLYTIC SENSITIVITY [2754-27-0] TSCA	': 4: no reaction with water EC 220-404-2	r under neutral conditions HMIS: 3-4-1-X		25g \$12.0	0	100g \$39.00	2kg \$290.0
	SIA0325.0							
CH ₂ CH ₂ SiCl ₃	ADAMANTYLETHYLTRICHLC C ₁₂ H ₁₉ Cl ₃ Si Contains Forms silica bonded pha 1. Yang, S. S. and Gilpin HYDROLYTIC SENSITIVITY	approximately 25% of ses for reverse phase , R. K. <i>Anal. Chem.</i> 19	chromatography. ¹ 988 , <i>5</i> 9, 2750.	297.73 Flashpoint: 15	135 / 3 5°C (310°F)	(36-7)	1.2204	1.5135
	[37843-11-1] TSCA	EC 253-687-6	HMIS: 3-1-1-X	5	5g \$73.0	00	25g \$292.00	
CH ₂ Si -Ci	SIB0962.0 BENZYLDIMETHYLCHLORO $C_9H_{13}CISi$	SILANE		184.74 Flashpoint: 73	75-6 / 15 °C (163°F)		0.949	1.5040
CH,	HYDROLYTIC SENSITIVITY	: 8: reacts rapidly with mo		S	10~ 040.6		F0~ \$194.00	
	[1833-31-4] TSCA SIB0970.0		HMIS: 3-2-1-X		10g \$46.0	IU	50g \$184.00	
CH ₂ Si -Cl	BENZYLTRICHLOROSILANE C ₇ H ₇ Cl ₃ Si Dipole moment: 1.78				140-2 / 10 °C (189°F) Il rat, LD50: 2,830 m	g/kg	1.288	1.527
	HYDROLYTIC SENSITIVITY			S	25~ 050		100~ \$160.00	
	[770-10-5] TSCA SIB0971.0	EC 212-219-0	HMIS: 3-2-1-X		25g \$50.0	IU	100g \$162.00	
OC ₂ H ₅ CH ₂ Si -OC ₂ H ₅ OC ₂ H ₅	BENZYLTRIETHOXYSILANE C ₁₃ H ₂₂ O ₃ Si HYDROLYTIC SENSITIVITY		isture/water	254.40 Flashpoint: 12	148 / 26 7°C (261°F)		0.986	1.4628 25
	[2549-99-7] TSCA	EC 219-841-1	HMIS: 2-1-0-X		10g \$42.0	00	50g \$168.00	
Si(CH ₃) ₂ Ci	SIB0994.0 2-(BICYCLOHEPTYL)DIMETI C ₉ H ₁₇ CISi HYDROLYTIC SENSITIVITY		ishus water anticochool	188.77 Flashpoint: 87	52-5 / 1 °C (189°F)		0.99	
	[117046-42-1]	. o. reacts rapidly with mo	HMIS: 3-2-1-X	5	25g \$72.0	00	100g \$234.00	
N .	SIB0997.0							
SiCI ₃	2-(BICYCLOHEPTYL)TRICHI C ₇ H ₁₁ Cl ₃ Si HYDROLYTIC SENSITIVITY		sistura water protic solvent	229.61 Flashpoint: 83	63-4 / 4.5 °C (181°F)		1.2678	1.4919
	[18245-29-9] TSCA	EC 242-121-3	HMIS: 3-2-1-X	5	10g \$34.0	00	50g \$136.00	
.H ₅) ₂ N , CH ₃	SIB1068.0 BIS(DIETHYLAMINO)DIMETH C ₁₀ H ₂₆ N ₂ Si	HYLSILANE		202.42 Flashpoint: 35	192-5 °C (95°F)		0.826	1.435
₂ H ₅) ₂ N CH ₃	Silylates diamines to cyc 1. Schwartz, E. et al. <i>J.</i> (See also SID4040.0 HYDROLYTIC SENSITIVITY [4669-59-4] TSCA	Org. Chem. 1981, 50,		s	50g \$136	.00		
	SIB1072.0							
(CH ₃) ₂ N CH ₃	$\begin{aligned} & \text{BIS}(\text{DIMETHYLAMINO}) \text{DIME} \\ & \text{C}_6 \text{H}_{18} \text{N}_2 \text{Si} \end{aligned}$	THYLSILANE		146.31 Flashpoint: -3	128-9 °C (27°F)	(-98)	0.810	1.4169 22
(CH ₃) ₂ N CH ₃	Couples silanol terminate See also SIB1185.0 HYDROLYTIC SENSITIVITY [3768-58-9] TSCA		isture, water, protic solvent HMIS: 3-4-1-X		25g \$23.0	10	100g \$75.00	
	SIB1706.0				20g ψ20.0		9 +00	
That is a chip chip cut, (chip), (chip	[BIS(NONAFLUOROHEXYLD SILYLETHYLDIMETHYLCHLO C ₂₁ H ₃₃ CIF ₁₈ O ₂ Si ₄ Forms self-cleaning surfi-	OROSILANE, 95%	THYL]-	807.26	128 / 0.2		1.244 ²⁵	1.3705 ²⁵
G	HYDROLYTIC SENSITIVITY	: 7: reacts slowly with mo	isture/water HMIS: 3-1-1-X		5g \$120	00		

	name		MW b	p/mm (m	p)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{_{\scriptscriptstyle 20}}$	
ÇH3 ÇH3 F3CH2CH2-Şİ—Ņ—ŞI-CH2CH2CF	SIB1828.4 1,3-BIS(TRIFLUOROPROPYL)TETRAMETHYL- DISILAZANE, 95% • C ₁₀ H ₂₁ F ₆ NSi ₂		325.45 Flashpoint: 78°C (1°	76-9 / 10 72°F)		1.11	1.386	
CH ₃ H CH ₃	Fluorinated blocking agent HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu [39482-87-6] TSCA EC 254-470-9	re/water HMIS: 2-2-1-X		50g \$148.0	0			
(CH ₃) ₃ SiO CI	SIB1837.0 BIS(TRIMETHYLSILOXY)DICHLOROSILANE 3,3-DICHLOROHEXAMETHYLTRISILOXANE		277.37	173	(-53)	1.0017	1.3983	
(CH ₃) ₃ SiO CI	$C_6H_{18}Cl_2O_2Sl_3\\ Sterically hindered protecting group for diols\\ HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu$	re. water. protic solvent	Vapor pressure, 57°	: 12 mm				
	[2750-44-9]	HMIS: 3-2-1-X		25g \$96.00)			
(CH ₃) ₃ SiO OCH ₃ (CH ₃) ₃ SiO CH ₃	SIB1843.0 BIS(TRIMETHYLSILOXY)METHYLMETHOXYSILANE METHOXYHEPTAMETHYLTRISILOXANE $C_8H_{24}O_3Si_3$		252.53	82 / 47		0.862	1.3883 ²⁵	
	HYDROLYTIC SENSITIVITY: 1: no significant reaction wit [7671-19-4]	th aqueous systems HMIS: 3-2-1-X		25g \$68.00)			
	SIB1846.0			20g \$00.00				
OSi(CH ₃) ₃ . CH ₃ C=NSi(CH ₃) ₃	N,O-BIS(TRIMETHYLSILYL)ACETAMIDE BSA $C_8H_{21}NOSi_2$ Versatile blocking agent		203.43 Flashpoint: 42°C (10 TOXICITY: oral rat,		(-24) g/kg	0.832	1.418	COMMERCIAL
	F&F: Vol. 13, p 34; Vol. 16, p 285; Vol. 20, p 50; V HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu [10416-59-8] TSCA EC 233-892-7			25g \$16.00)	100g \$52.00	2kg \$560.00	
QSi(CH ₃) ₃	SIB1876.0 BIS(TRIMETHYLSILYL)TRIFLUOROACETAMIDE BSTFA		257.40 Flashpoint: 24°C (7	45-50 / 15 5°F)	(-10)	0.969	1.3840	0
$CF_3C = NSi(CH_3)_3$	C ₈ H ₁₈ F ₃ NOSi ₂ Silylation reagent for preparing derivatives of amin 1. Stalling, D. et al. <i>Biochem. Biophys.</i> , <i>Res. Com</i>	m. 1968, 31, 616.						COMMENCIAL
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist. [25561-30-2] TSCA EC 247-103-9	HMIS: 3-3-1-X	S	25g \$52.00)	100g \$169.00	2kg \$1,360.00)
H_9	SIB1932.5 1-BUTYLDECAMETHYLPENTASILOXANYLETHYL- TRIETHOXYSILANE Contains isomers $C_{22}H_{58}O_7SI_6$ Phase collapse resistant bonded phase		603.21	140-2 / 1		0.921		
2,	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu	re/water HMIS: 2-2-1-X		10g \$96.00)			
СП ₃ СП ₂ СП ₂ СП ₂ S; −СІ СП ₃	SIB1934.0 n-BUTYLDIMETHYLCHLOROSILANE C ₆ H ₁₅ CISi Forms bonded phases for HPLC		150.72 Flashpoint: 39°C (10	138 02°F)		0.8751	1.4205	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu		s					
	[1000-50-6] TSCA	HMIS: 3-2-1-X		25g \$43.00)	100g \$140.00		
CH ₃ Me H ₃ C – C – Si – Cl	SIB1935.0 t-BUTYLDIMETHYLCHLOROSILANE $C_6H_{15}CISi$		150.72 Flashpoint: 22°C (72 Autoignition temper Vapor pressure, 100	ature: 405°C	(87-90)	0.830		COMM
•	Silylation reagent - derivatives resistant to Grignards, alkyl lithium compounds, etc. Blocking agent widely used in prostaglandin synthesis F&F: Vol. 4, p 57, p 176; Vol. 5, p 74; Vol. 6, p 78; Vol. 8, p 58; Vol. 9, p 77; Vol. 10, p 62; Vol. 11, p 88; Vol. 12, p 83.							COMMENCIAL
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu [18162-48-6] TSCA EC 242-042-4	re, water, protic solvents HMIS: 3-4-1-X	s	25g \$36.00		100g \$117.00	2kg \$720.00	
СН ₃ СП ₃ СП ₂ СП ₂ СЦ ₂ S ₁ =N(СП ₃) ₂	SIB1937.0 n-BUTYLDIMETHYL(DIMETHYLAMINO)SILANE $C_8H_{21}NSi$		159.35 Flashpoint: 26°C (79	47-9 / 12 9°F)		0.772	1.422	
CII ₅	Highly reactive reagent for bonded phases withou HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu [181231-67-4] TSCA			10g \$38.00)	50g \$152.00		
CH ₂ CH ₃ OCH ₃	SIB1971.0 t-BUTYLISOPROPYLDIMETHOXYSILANE C ₉ H ₂₂ O ₂ Si		190.36	75 / 20		0.871	1.4189	
CH, CH,	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu [109144-59-4]	re/water HMIS: 3-2-1-X		1.0g \$126.0	0			

	name			MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
Charles and the second	SIB1972.0 n-BUTYLMETHYLDICHLOROS	ILANE		171.14	148	1.0424	1.4312
I ₃ CH ₂ CH ₅ CH ₂ = Si = CH ₃ Cl	C ₅ H ₁₂ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8 [18147-23-4] TSCA	3: reacts rapidly with moi EC 242-035-6	sture, water, protic solvent HMIS: 3-3-1-X	Flashpoint: 30°			
CH ₂ CH ₂	[18147-23-4] TSCA SIB1972.2 t-BUTYLMETHYLDICHLOROSI		ПІЙІЗ. 3-3-1-А	171.14	10g \$38.00 130-2 (88-	90)	
CH_3 CI	$C_5H_{12}CI_2Si$ HYDROLYTIC SENSITIVITY: 8 [18147-18-7] TSCA	3: reacts rapidly with moi EC 242-034-0	sture, water, protic solvent HMIS: 3-3-1-X	Flashpoint: 26°	C (79°F) 5g \$89.00		
CH ₃ CH ₃ CH ₃	SIB1972.5 p-(t-BUTYL)PHENETHYLDIME	THYLCHLOROSILAN	IE	254.87	122-3 / 2	0.95	
I ₃ CH ₃	C ₁₄ H ₂₃ CISi HYDROLYTIC SENSITIVITY: 8 [93502-75-1]	Contains ~5% me 3: reacts rapidly with moi		is	25g \$82.00		
	SIB1973.0 p-(t-BUTYL)PHENETHYLTRICH			295.71	124-9 / 2.5	1.16	
3	C ₁₂ H ₁₇ Cl ₃ Si For bonded phase HPLC HYDROLYTIC SENSITIVITY: 8	Mixed α,β isomers 3: reacts rapidly with moi		Flashpoint: 108	3°C (226°F)		
	[211925-40-5] SIB1974.2		HMIS: 3-2-1-X		25g \$78.00		
en ren en	ω-BUTYLPOLY(DIMETHYLSIL(TRIETHOXYSILANE, tech-95 OC ₂ H ₅		s, contains isomers	600-850		0.925	1.4124
CH ₃ CH ₃ CH ₃ Si -O Si -O Si -CH ₂ CH ₂ CH ₃ CH ₃ 3-6 CH ₃	-\$i —OC2H; OC2H; HYDROLYTIC SENSITIVITY: 7	7: reacts slowly with mois	sture/water				
	SIB1982.0		HMIS: 2-2-1-X		25g \$84.00		
	n-BUTYLTRICHLOROSILANE C ₄ H ₉ Cl ₃ Si Vapor pressure, 31°: 10 m.	m		191.56 Flashpoint: 45°	142-3 °C (113°F)	1.1608	1.4364
	HYDROLYTIC SENSITIVITY: 8 [7521-80-4] TSCA		sture, water, protic solvent HMIS: 3-2-1-X	ds	25g \$37.00	100g \$121.00	
CH ₃ Cl	SIB1985.0 t-BUTYLTRICHLOROSILANE C ₄ H ₉ Cl ₃ Si Forms silanetriol			191.56 Flashpoint: 40°	142-3 (97- °C (104°F)	100) 1.1608	1.436
	HYDROLYTIC SENSITIVITY: 8 [18171-74-9] TSCA	3: reacts rapidly with moi EC 242-059-7	sture, water, protic solvent HMIS: 3-2-1-X	ts	10g \$41.00	50g \$164.00	
(CH ₂) ₃ Si(OCH ₂ CH ₃) ₃	SIB1986.0 n-BUTYLTRIETHOXYSILANE C ₁₀ H ₂₄ O ₃ Si			220.38	192-3	0.8883	1.4011
	HYDROLYTIC SENSITIVITY: 7 [4781-99-1]	7: reacts slowly with mois	ture/water HMIS: 2-2-1-X		25g \$56.00		
CH-CH-CH-Si(OCHA-	SIB1988.0 n-BUTYLTRIMETHOXYSILANE $C_7H_{18}O_3Si$			178.30 Flashpoint: 49°	164-5 C (120°F)	0.9312	1.3979
,	HYDROLYTIC SENSITIVITY: 7 [1067-57-8] TSCA	reacts slowly with mois EC 213-936-1	ture/water HMIS: 3-2-1-X		25g \$42.00	100g \$136.00	
CH ₃ OCH ₃ CCH ₃ OCH ₃	SIB1989.0 t-BUTYLTRIMETHOXYSILANE $C_7H_{18}O_3Si$			178.30	140-1	0.903	1.3941
	HYDROLYTIC SENSITIVITY: 7 [18395-29-4] SIC2266.0	7: reacts slowly with mois	ture/water HMIS: 3-2-1-X		10g \$143.00		
> \	13-(CHLORODIMETHYLSILYLN COSANE, 95% C ₃₀ H ₆₃ CISi	METHYL)HEPTA-		487.37	200-10 / 0.01	0.848 ²⁵	1.4542 ³⁰
H ₃ C—si—CH ₃	Forms hydrophobic bonde HYDROLYTIC SENSITIVITY: 8		sture, water, protic solvent	ts			

name		MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
$\begin{split} & \text{SIC2266.5} \\ & \text{11-(CHLORODIMETHYLSILYL)METHYLTRICOSANE} \\ & \text{C}_{ze}\text{H}_{se}\text{ClSi} & \text{tech-95, contains } \sim 5\% \\ & \text{Forms self-assembled oleophilic monolayers} \\ & \text{Employed as bonded phase in HPLC} \\ & \text{See also SID4401.0} \\ & \text{HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture} \end{split}$	% isomers	431.27	170 / 0.075	0.887	1.4575 22
	HMIS: 3-1-1-X		10g \$101.00		
SIC2465.0 CYCLOHEXYLDIMETHYLCHLOROSILANE C ₈ H ₁₇ ClSi Silane blocking agent with good resistance to Grigr	I	176.76 Flashpoint: 63°0	52-3 / 2 C (145°F)	0.956	1.4626
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [71864-47-6]	-		25g \$60.00	100g \$195.00	
SIC2468.0 CYCLOHEXYLMETHYLDICHLOROSILANE C ₇ H ₁₄ Cl ₂ Si	I	197.18 Flashpoint: 66°0	83 / 15 C (151°F)	1.095	1.4724
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture [5578-42-7] TSCA EC 226-956-0	e, water, protic solvents HMIS: 3-2-1-X		25g \$25.00	2kg \$402.00	
SIC2469.0 CYCLOHEXYLMETHYLDIMETHOXYSILANE C ₉ H ₂₀ O ₂ Si Vapor pressure, 20°: 12 mm Donor for polyolefin polymerization	!	188.34 Flashpoint: 66°0 FOXICITY: ora	196 C (151°F) I rat, LD50: 3,000mg/kg	0.9472	1.4354
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture [17865-32-6] TSCA	HMIS: 2-2-1-X		25g \$11.00	100g \$37.00	2kg \$496.0
SIC2470.0 (CYCLOHEXYLMETHYL)TRICHLOROSILANE $C_7H_{13}Cl_9Si$		231.62	94-8 / 11		
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [18388-16-4] TSCA EC 242-265-7 I SIC2480.0	e, water, protic solvents HMIS: 3-2-1-X		10g \$110.00		
CYCLOHEXYLTRICHLOROSILANE C _e H ₁₁ Cl ₃ Si Intermediate for melt-processable silsesquioxane-s	, 1	217.60 Flashpoint: 91°0	90-1 / 10 C (196°F)	1.222	1.4774
			25g \$40.00	100g \$130.00	
SIC2482.0 CYCLOHEXYLTRIMETHOXYSILANE $C_9H_{20}O_3Si$:	204.34	207-9		
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture [17865-54-2] SIC2490.0	e/water HMIS: 2-3-1-X		10g \$34.00	50g \$136.00	
CYCLOOCTYLTRICHLOROSILANE, 95% $C_8H_{15}CI_3Si$		245.65	85-9 / 1.25	1.19	
<u> </u>	e, water, protic solvents HMIS: 3-2-1-X		10g \$40.00	50g \$160.00	
SIC2555.0 CYCLOPENTYLTRICHLOROSILANE C ₅ H ₅ Cl ₃ Si		203.57 Flashpoint: 77°(178-9 C (171°F)	1.225	1.4713
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture [14579-03-4] TSCA EC 238-621-6	e, water, protic solvents HMIS: 3-2-1-X		25g \$45.00	100g \$146.00	
SIC2557.0 CYCLOPENTYLTRIMETHOXYSILANE C ₈ H ₁₈ O ₃ Si		190.31 Flashpoint: 54°(75 / 10 C (129°F)	0.990 ²⁵	1.4240 ²⁵
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture [143487-47-2] SID2660.0	e/water HMIS: 3-2-1-X		10g \$34.00	50g \$136.00	
$\begin{array}{l} \text{n-DECYLDIMETHYLCHLOROSILANE} \\ \text{C}_{12}\text{H}_{27}\text{CISi} \end{array}$	1	234.88 Flashpoint: 137	98 / 2 °C (279°F)	0.866	1.441
1	e, water, protic solvents HMIS: 3-1-1-X		25g \$38.00	100g \$124.00	
SID2662.0 n-DECYLMETHYLDICHLOROSILANE $C_{11}H_{24}Cl_2Si$	1	255.31 Flashpoint: 120	111-4 / 3 °C (248°F)	0.960	1.4490
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [18051-88-2] TSCA EC 241-962-3	e, water, protic solvents HMIS: 3-1-1-X		25g \$32.00		

	name	MW bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
Cl Cl ₃ (CH ₂) ₉ — Şi — Cl	SID2663.0 n-DECYLTRICHLOROSILANE C ₁₀ H ₂₁ Cl ₃ Si	275.72 133-7 / 5 Flashpoint: >110°C (>230°F)	1.0540	1.4528
Ċı	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr [13829-21-5] TSCA EC 237-540-3 HMIS: 3-1	rotic solvents	100g \$62.00	
$CH_3(CH_2)_9 - Si - OC_2H_5$	SID2665.0 n-DECYLTRIETHOXYSILANE C ₁₆ H ₃₆ O ₃ Si	304.54 150 / 8	0.8790	1.4220
OC ₂ H ₅	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [2943-73-9] EC 220-940-7 HMIS: 2-1	-0-X 25g \$54.00	100g \$175.00	
nC ₄ H ₉ Si	SID3203.0 DI-n-BUTYLDICHLOROSILANE C _n H _{1n} Cl ₂ Si	213.22 212 Flashpoint: 64°C (147°F)	0.991	1.4448
nC ₄ H ₉ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr [3449-28-3] TSCA HMIS: 3-2		50g \$288.00	
nC ₄ H ₉ S(OCH ₃ nC ₄ H ₉ S(OCH ₃	SID3214.0 DI-n-BUTYLDIMETHOXYSILANE C ₁₀ H ₂₄ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	204.39 125 / 50 Flashpoint: 103°C (217°F)	0.861	
	[18132-63-3] TSCA HMIS: 3-1	-1-X 25g \$64.00		
C ₄ H ₉ -S _i N - S _i - nC ₄ H ₉ CH ₃ CH ₃ CH ₃	SID3349.0 1,3-DI-n-BUTYLTETRAMETHYLDISILAZANE C ₁₂ H ₃₁ NSi ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	245.55 81 / 2 Flashpoint: 86°C (187°F)	0.80	1.4353
	[82356-80-7] HMIS: 2-2	2-1-X 25g \$80.00	100g \$260.00	
CH ₃ CH ₃ CH ₃ -Si-O-Si-O-Si-Cl CH ₃ CH ₃ CH ₃	SID3360.0 1,5-DICHLOROHEXAMETHYLTRISILOXANE, tech-95 $C_eH_{18}Cl_2O_2Si_3$ Δ Hvap: 11.4 kcal/mole Vapor pressure, 50°: 1 mm	277.37 184 (-53 Flashpoint: 76°C (169°F)	3) 1.018	1.4071
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr [3582-71-6] TSCA EC 222-707-5 HMIS: 3-2		100g \$130.00	
CI Si-CI	SID3367.6 DICHLOROPHENYLTRICHLOROSILANE, 95% C ₆ H ₃ Cl ₅ Si Isomeric mixture Vapor pressure, 102°: 7 mm Monomer for high refractive index resins HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr	280.44 260-1 Flashpoint: 150°C (302°F)	1.553	1.564
	[27137-85-5] TSCA EC 248-254-3 HMIS: 3-1 SID3372.0	-1-X 25g \$49.00		
CH ₃ CH ₃ Cl—Si-O—Si—Cl CH ₃ CH ₃	1,3-DICHLOROTETRAMETHYLDISILOXANE C ₄ H ₁₂ Cl ₂ OSi ₂ Vapor pressure, 25°: 8 mm Diol protection reagent	203.22 138 (-37 Flashpoint: 15°C (59°F)	7) 1.039	1.4054
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr [2401-73-2] TSCA EC 219-278-1 HMIS: 3-4		100g \$124.00	2kg \$960.00
Ssi, CI	SID3382.0 DICYCLOHEXYLDICHLOROSILANE C ₁₂ H ₂₂ Cl ₂ Si	265.30 123 / 0.4 Flashpoint: 149°C (300°F)	1.103	
CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr [18035-74-0] HMIS: 3-1			
Cl—si—Cl	SID3390.0 DICYCLOPENTYLDICHLOROSILANE $C_{10}H_{16}Cl_2Si$	237.24 105-7 / 10 Flashpoint: 84°C (183°F)	1.110	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pr [139147-73-2] HMIS: 3-2		50g \$116.00	
	SID3391.0	228.40 120 / 6	1.000	1.466
n _i co-si-ocn ₃	DICYCLOPENTYLDIMETHOXYSILANE C ₁₂ H ₂₄ O ₂ Si Employed in propylene polymerization	Flashpoint: 102°C (216°F)		
H ₂ CO—S ₂ —OCH ₃	$C_{12}H_{24}O_2Si$		50g \$96.00	
CH ₃ CH ₃ CH ₃ I ₅ O-Si-O-Si-O-Si-OC ₂ H ₅ CH ₃ CH ₃ CH ₃	C ₁₂ H ₂₄ O ₂ Si Employed in propylene polymerization HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [126990-35-0] TSCA HMIS: 3-1 SID3394.0 1 5-DIETHOLYMEYAMETHYLTRISH OXAME		50g \$96.00 0.912	1.389

	name		MW	bp/mm (mp)	D4 ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
CH ₃ CH ₂ NSi(CH ₃) ₃	SID3398.0 (DIETHYLAMINO)TRIMETHYLSILANE TMSDEA C ₇ H ₁₉ NSi Silylation reagent F&F: Vol. 3, p 317; Vol. 4, p 544; Vol. 6, p 634; V	(al. 18. p. 382	145.32 Flashpoint: 10°C (ΔHform: -87.7 kc		0.7627	1.4109 COMMERCED
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [996-50-9] TSCA EC 213-637-6			25g \$28.00	100g \$90.00	2kg \$920.00
CH ₃ CH ₂ CI Si CH ₂ CH ₂ CI	SID3402.0 DIETHYLDICHLOROSILANE C ₄ H ₁₀ Cl ₂ Si Thermal conductivity: 0.134 W/m [*] C Dipole moment: 2.4 Surface tension: 30.3 mN/m		157.11 Flashpoint: 27°C (TOXICITY: oral ra Vapor pressure: 2 ΔHvap: 10.0 kcal	at, LD20: 1,000 mg/kg 1: 10 mm	1.0504	1.4309
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist [1719-53-5] TSCA EC 217-005-0	ture, water, protic solven HMIS: 3-3-1-X	ts	25g \$25.00	100g \$81.00	
CH ₃ CH ₂ Si OC ₂ H ₅ CH ₃ CH ₂ Si OC ₂ H ₅	SID3404.0 DIETHYLDIETHOXYSILANE C ₈ H ₂₀ O ₂ Si Vapor pressure, 73°: 100 mm	hua hua h	176.33 Flashpoint: 43°C (157 (109°F)	0.8622	1.4022
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [5021-93-2] TSCA EC 225-706-8	HMIS: 2-2-1-X		10g \$36.00	50g \$144.00	
CH ₃ (CH ₂) ₅ , Cl CH ₃ (CH ₂) ₅	$\begin{split} & \text{SID3510.0} \\ & \text{DI-n-HEXYLDICHLOROSILANE} \\ & \text{C}_{12}\text{H}_{26}\text{CI}_2\text{Si} \\ & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mois} \end{split}$	ture, water, protic solven	269.33 Flashpoint: 88°C (111-3 / 6 (190°F)	0.962	1.4518
H ₃ C CH ₃	[18204-93-8] TSCA EC 242-093-2 SID3526.0	HMIS: 3-2-1-X		10g \$41.00	50g \$164.00	
H—Şi—Cı CH.	$\begin{split} & \text{DIISOBUTYLCHLOROSILANE} \\ & \text{C}_8\text{H}_{19}\text{CISi} \\ & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mois} \end{split}$	ture, water, protic solven	178.78 Flashpoint: 42°C (166-7 (108°F)	0.995	1.4340
и _з с ^с ен _з	[18279-73-7]	HMIS: 3-2-1-X		25g \$127.00		
сн 1 1сн ₂ 0-5:—оси ₂ сп ₃	SID3528.0 DIISOBUTYLDIETHOXYSILANE $C_{12}H_{28}O_2Si$		232.44	221	0.845	1.418
U ₃ C CH ₂ CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [18297-14-8]	ture/water HMIS: 2-2-1-X		10g \$86.00		
H ₂ C ₂ CH ₃ CH CH ₂ CH ₃ O-3p-1 CH ₃ CH ₂	$\begin{split} &\text{SID3530.0} \\ &\text{DIISOBUTYLDIMETHOXYSILANE} \\ &\text{C_{10}H}_{24}\text{O_2Si} \\ &\text{Intermediate for diisobutylsilanediol, a liquid crys} \\ &\text{Employed in polyolefin polymerization} \end{split}$	otal	204.39 Flashpoint: 102°C	120 / 6 : (216°F)	0.87	1.4167
n ₃ e ^c Ctl ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [17980-32-4] TSCA	ture/water HMIS: 2-1-1-X		10g \$20.00	50g \$80.00	
H ₃ C ₃ CH ₃ CH CI=\$i=CI	SID3537.0 DIISOPROPYLDICHLOROSILANE $C_{\rm g}H_{\rm td}Cl_2Si$ Forms bis(blocked) or tethered alcohols 1,2		185.17 Flashpoint: 43°C (64-5 / 25 (109°F)	1.026	1.4450
H ₄ C CH ₃	Used as tether in ring-closing-metathesis (RCM) 1. Bradford, C. et al. <i>Tetrahedron Lett.</i> 1995 , 36, 2. Hutchinson, J. et al. <i>Tetrahedron Lett.</i> 1991 , 3 3. Evans, P. A. et al. <i>J. Am. Chem. Soc.</i> 2003 , 12	4189. 32, 573.				COMMERCIAL
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mois [7751-38-4]	ture, water, protic solven HMIS: 3-2-1-X	ts	10g \$21.00	50g \$84.00	2kg \$1,544.00
н ₃ с сн ₃ си си ₃ о−я-осн ₃ н ₃ с сн ₃	SID3538.0 DIISOPROPYLDIMETHOXYSILANE $C_8H_{20}O_2Si$ Cocatalyst for α -olefin polymerization. 1 1. Lee, S. et al. U.S. Patent 5,223,466, 1993.		176.33 Flashpoint: 43°C (85-7 / 50 (109°F)	0.875	1.4140 COMMERCAL
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [18230-61-0] TSCA	ture/water HMIS: 3-2-1-X		10g \$14.00	50g \$56.00	2kg \$520.00
CH ₃ O Si(OCH ₂ CH ₃) ₃	SID3544.0 3,5-DIMETHOXYPHENYLTRIETHOXYSILANE $C_{14}H_{24}O_5Si$		300.43	136-8 / 0.6	1.050	
СН3О	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist	ture/water HMIS: 2-1-1-X		5g \$175.00		

	name		MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
	SID3605.0 (N,N-DIMETHYLAMINO)TRIMETHYLSILANE TMSDMA, PENTAMETHYLSILANAMINE		117.27 Flashpoint: -1	` '	0.741	1.3970
CH ₃ N-Si-CH ₃ CH ₃ N-GH ₃	C ₅ H ₁₅ NSi Selectively silylates equatorial hydroxyl groups Stronger silylation reagent than HMDS; silylate Dialkylaminotrimethylsilanes are used in the silvent	es amino acids. ² ynthesis of pentamethi		cal/mole		
	 Yankee, E. et al. J. Am. Chem. Soc. 1972, § Rühlman, K. Chem. Ber. 1961, 94, 1876. Kořínek, M. et al. Synthesis 2009, 1291. HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo 					
	[2083-91-2] TSCA EC 218-222-3	HMIS: 3-4-1-X		25g \$38.00	100g \$123.00	2kg \$920.00
CH ₃ CHCH ₂ CH ₃ H ₃ C NII H ₃ C NII CH ₃ CHCH ₂ CH ₁	SID4040.0 DIMETHYLBIS(s-BUTYLAMINO)SILANE, 95% C ₁₀ H _{2e} N ₂ Si Vapor pressure, 20°: 3 mm Chain extender for silicones HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mo	oisture, water, protic solver	Autoignition to	82 / 15 (<50) 0°C (104°F) al rat, LD50: 907 mg/kg emperature: 225°	0.810	1.4271
	[93777-98-1] TSCA EC 298-130-8 SID4065.0	HMIS: 3-3-1-X		25g \$41.00	100g \$133.00	
ÇH₃ ÇH₃ CH₃ÇCH₂CH₂Si −Cl CH₃ CH₃	$\label{eq:control} (3,3\text{-DIMETHYLBUTYL}) DIMETHYLCHLOROSILAN \\ \textit{NEOHEXYLDIMETHYLCHLOROSILANE} \\ \textbf{C}_{\text{B}}\textbf{H}_{\text{19}}\textbf{CISi} \\ \textbf{Blocking agent}$		178.78 Flashpoint: 38	167 3°C (100°F)	0.849	1.4240
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mo [96220-76-7] TSCA-L	oisture, water, protic solver HMIS: 3-3-1-X	nts	25g \$34.00	100g \$110.00	
CI CH ₃) ₃ C CH ₂ CH ₂ -S -CI	SID4069.0 (3,3-DIMETHYLBUTYL)TRICHLOROSILANE NEOHEXYLTRICHLOROSILANE C _e H ₁₃ Cl _e Si		219.61	183-4	1.1355	1.4479
CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [105732-02-3] SID4074.0	oisture, water, protic solver HMIS: 3-3-1-X	nts	25g \$48.00		
CH ₃	(DIMETHYLCHLOROSILYL)METHYLPINANE $C_{12}H_{22}CISi$ $1*S,2*S,5*S$ [α] _D : -5.15; >95%	% ontical purity	230.85 Flashpoint: 92	93-4 / 2 2°C (198°F)	0.957	1.478
CH ₃	Acetylenic derivative forms chiral polymer mer 1. Aoki, T. et al. <i>Makromol. Chem., Rapid Com</i> HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me	mbrane that resolves an mun. 1992 , <i>13</i> , 565.				
	[2182-66-3] TSCA EC 218-562-2	HMIS: 3-2-1-X		10g \$37.00		
CH ₃ Si-NH CH ₃	SID4074.4 1,1-DIMETHYLCYCLOSILAZANES, 22-25% in hex Primarily trimer and tetramer Hydrophobic surface treatment for silica HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo		Flashpoint: 20)°C (-25°F)	0.69	
	TSCA	HMIS: 2-4-1-X		100g \$20.00	1.5kg \$142.50	
O CH ₃ O CH ₃ CO-Si-OCCH ₃	SID4076.0 DIMETHYLDIACETOXYSILANE $C_eH_{12}O_4Si$ Reagent for the preparation of cis-diols and cc	orticosteroids ¹	176.24 Flashpoint: 37	164-6 7°C (99°F)	1.054	1.4030
CH ₃	1. Kelley, R. J. <i>Chromatogr.</i> 1969 , <i>43</i> , 229. F&F: Vol. 3, p. 113. HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [2182-66-3] TSCA EC 218-562-2			100g \$32.00	500g \$128.00	
	SID4120.0 DIMETHYLDICHLOROSILANE C ₂ H ₆ Cl ₂ Si	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	129.06 Flashpoint: -1	70-1 (-76) 0°C (14°F)	1.0637	1.4055
CH ₃ Cl—Si—Cl CH ₃	Viscosity: 0.47 cSt Surface tension: 20.1 mN/m ΔHvap: 8.0 kcal/mole ΔHcomb: -491 kcal/mole Vapor pressure, 17°: 100 mm		Autoignition to Flammability Critical tempe Critical pressu			
i in the time of	Coefficient of thermal expansion: 1.3 x 10 ⁻³ AIR TRANSPORT FORBIDDEN Fundamental monomer for silicones Employed in the tethering of two olefins for the 1. Van de Weghe, P. et al. <i>Org. Lett.</i> 2002, 4, 4 F&F: Vol. 3, p 114; Vol. 4, p 183.		Specific heat:	,		
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [75-78-5] TSCA EC 200-901-0	oisture, water, protic solver HMIS: 3-4-2-X		500g \$25.00 zCYL-S-019 container required -	2kg \$58.00	18kg \$477.00*

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
200	SID4120.1				
CH ₃	DIMETHYLDICHLOROSILANE, 99+%	129.06	70-1 (-76) 1.0637	1.4055
Cl-Si-Cl	C ₂ H ₆ Cl ₂ Si	Flashpoint: -	10°C (14°F)		
CH ₃	Redistilled				
CH3	AIR TRANSPORT FORBIDDEN	alvente			
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic so [75-78-5] TSCA EC 200-901-0 HMIS: 3-4-2-X	nvents	25g \$11.00	500g \$68.00	18kg \$1,210.00*
	[75-76-5] TOOA EG 200-301-0 TIIVIIG. 5-4-2-X	* zDR-S-019 c	r zCYL-S-019 container require	•	10kg Ψ1,210.00
	SID4121.0	2577 0 070 0	1 2012 0 010 comamor require	a not morado	
	DIMETHYLDIETHOXYSILANE	148.28	114-5 (-97	0.8395	1.3805
ÇH ₃	C ₆ H ₁₆ O ₂ Si	Flashpoint: 1	The state of the s	, 0.0000	1.0000
11 0-8:-00 II	Viscosity: 0.53 cSt		oral rat, LDLo: 1,000 mg/kg		
$_{2}H_{5}U_{-}_{3}I_{-}U_{2}H_{5}$	Vapor pressure, 25°: 15 mm	ΔHform: 200			
CH_3	Dipole moment: 1.39	ΔHvap: 9.8 l	ccal/mole		
	Coefficient of thermal expansion: 1.3 x 10 ⁻³	ΔHcomb: -1	119 kcal/mole		
	Hydrophobic surface treatment and release agent				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[78-62-6] TSCA EC 201-127-6 HMIS: 2-4-1-X		100g \$12.00	2kg \$144.00	15kg \$930.00
	SID4123.0				
	DIMETHYLDIMETHOXYSILANE, 96%	120.22	82 (-80	0.8646	1.3708
ÇH ₃	C ₄ H ₁₂ O ₂ Si Contains methanol	Flashpoint: -8	, ,		
CH ₃ O-Si-OCH ₃	Viscosity, 20°: 0.44 cSt		oral rat, LD50: >2,000 mg/kg)	
CH ₃	Vapor pressure, 36°: 100 mm	•	emperature: 325°		
· · · · · ·	Coefficient of thermal expansion: 1.3 x 10 ⁻³	ΔHcomb: 83			
	Dipole moment: 1.33 debye	ΔHform: 171	kcal/mole		
	Provides hydrophobic surface treatments in vapor phase applicat HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	ONS			
	[1112-39-6] TSCA EC 214-189-4 HMIS: 3-4-1-X		25g \$10.00	2kg \$110.00	15kg \$600.00
200	SID4123.1		209 ψ10.00	Zitg #110.00	Toky \$000.00
CH ₃	DIMETHYLDIMETHOXYSILANE, 99+%	120.22	00 / 00	0.8646	1.3708
CH ₃ O-Si-OCH ₃	DMDMOS	120.22	82 (-80) 0.0040	1.3700
CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[1112-39-6] TSCA EC 214-189-4 HMIS: 3-4-1-X		500g \$84.00		
	SID4125.0				
	DIMETHYLETHOXYSILANE	104.22	54-5	0.757	1.3683
	C ₄ H ₁₂ OSi	Flashpoint: 1			
		TOXICITY: o	oral rat, LD50: 5,000 mg/kg		
	Undergoes hydrosilylation reactions	Vapor pressu	ıre, 25°: 281 mm		A A
CH ₃	Waterproofing agent for space shuttle thermal tiles. ¹				101
	1 0 0 1				
H-Si-OC ₂	1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , 62, 668.				12
	H ₅ 1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , <i>62</i> , 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water		25~ #22.22	100~ \$104.00	
H-Si-OC ₂	H ₅ 1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X		25g \$32.00	100g \$104.00	4
H-Si-OC ₂ CH ₃	H ₅ 1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0				
H-Si-OC ₂ CH ₃	H ₅ 1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90%	124.64	77	100g \$104.00 0.953 ²⁵	1.3865
н—si-ос ₂ сн ₃ сн ₃ о-si-сі	H ₅ 1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi	Flashpoint: -9	77		1.3865
н–si-ос ₂ сн ₃	H ₅ 1. Hill, W. et al. <i>Polym. Mater. Sci. Eng.</i> 1990 , 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic so	Flashpoint: -9	77 9°C (16°F)	0.953 ²⁵	1.3865
н—si-ос ₂ сн ₃ сн ₃ о-si-сі	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X	Flashpoint: -9	77		1.3865
H—Si—OC ₂ CH ₃ CH ₃ CH ₅ O-Si—CI CH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0	Flashpoint: -{ olvents	77 9°C (16°F) 25g \$50.00	0.953 ²⁵	
H—Si—OC ₂ CH ₃ ÇH ₃ CH ₅ O-Si—CI CH ₃ QCH ₃ QCH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95%	Flashpoint: -{ olvents 226.38	77 9°C (16°F) 25g \$50.00 165	0.953 ²⁵	1.3865
H—\$i—OC ₂ CH ₃ ÇH ₃ CH ₃ O—\$i—CI CH ₃ OCH ₃ OCH ₃ 3C—\$i—CH ₃	$\begin{array}{lll} \textbf{H}_{5} & \textbf{1.} \ \textbf{Hill}, \textbf{W.} \ \textbf{et al.} \ \textbf{\textit{Polym. Mater. Sci. Eng. 1990, } 62, 668.} \\ \textbf{HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water} \\ \underline{\textbf{[14857-34-2]}} & \textbf{TSCA} & \textbf{EC 238-921-7} & \textbf{HMIS: 2-4-1-X} \\ \textbf{SID4210.0} \\ \textbf{DIMETHYLMETHOXYCHLOROSILANE, } 90\% \\ \textbf{C}_{3}\textbf{H}_{9}\textbf{CIOSi} \\ \textbf{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sci.} \\ \underline{\textbf{[1825-68-9]}} & \textbf{TSCA} & \textbf{HMIS: 3-4-1-X} \\ \textbf{SID4236.0} \\ \textbf{1,3-DIMETHYLTETRAMETHOXYDISILOXANE, } 95\% \\ \textbf{C}_{6}\textbf{H}_{16}\textbf{O}_{5}\textbf{Si}_{2} \\ \end{array}$	Flashpoint: -{ olvents	77 9°C (16°F) 25g \$50.00 165	0.953 ²⁵	
H—Si—OC ₂ CH ₃ ÇH ₃ CH ₅ O-Si—CI CH ₃ QCH ₃ QCH ₃	H 5 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	Flashpoint: -{ olvents 226.38	77 9°C (16°F) 25g \$50.00 165 0°C (86°F)	0.953 ²⁵	
H—\$i—OC ₂ CH ₃ ÇH ₃ CH ₃ O-\$i—CI CH ₃ OCH ₃ OCH ₃ 3C—\$i—O-\$i—CH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X	Flashpoint: -{ olvents 226.38	77 9°C (16°F) 25g \$50.00 165	0.953 ²⁵ 100g \$162.00 1.010	
H—\$i—OC ₂ CH ₃ CH ₃ CH ₅ O—\$i—CI CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0	Flashpoint: -{ plyents 226.38 Flashpoint: 3	77 25g \$50.00 165 0°C (86°F) 10g \$32.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00	
H—\$i—OC ₂ CH ₃ ÇH ₃ CH ₃ O-\$i—CI CH ₃ OCH ₃ OCH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X	Flashpoint: -{ olvents 226.38	77 9°C (16°F) 25g \$50.00 165 0°C (86°F)	0.953 ²⁵ 100g \$162.00 1.010	
H—\$i—OC ₂ CH ₃ CH ₃ CH ₅ O—\$i—CI CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE	Flashpoint: -{ plyents 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00	
H—\$i—OC ₂ CH ₃ CH ₃ CH ₅ O—\$i—CI CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	H ₅ 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si	Flashpoint: -{ plyents 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00	
H—\$i—OC ₂ CH ₃ CH ₃ CH ₅ O—\$i—CI CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	H 5 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st	Flashpoint: -{ plyents 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940	
H—\$i—OC ₂ CH ₃ \$\begin{align*} CH_3 & \text{CH}_3 \\ CH_3 & \text{CH}_3 \\ CH_3 & \text{OCH}_3 \\ OCH_3 \\ OCH_3 & \text{OCH}_3 \\ OCH_3 & \text{OCH}_3 \\ OCH_3 \\ OCH_3 & \text{OCH}_3 \\ OCH_3 \\ O	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [18416-07-4] HMIS: 3-2-1-X	Flashpoint: -{ plyents 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940	
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ O—Si—CI CH ₃ OCH ₃	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₈ H ₄₀ O ₂ Si	Flashpoint: -{ 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ O—Si—CI CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ CCI ₃ (CH ₂) ₇ CI CH ₃ (CH ₂) ₇ CI	$\begin{array}{lll} \text{H}_5 & \text{1. Hill, W. et al. } \textit{Polym. Mater. Sci. Eng. } \textbf{1990, } 62, 668. \\ & \text{HYDROLYTIC SENSITIVITY: } 7: \text{ reacts slowly with moisture/water} \\ \hline [14857-34-2] & \text{TSCA} & \text{EC } 238-921-7 & \text{HMIS: } 2-4-1-X \\ \text{SID4210.0} \\ & \text{DIMETHYLMETHOXYCHLOROSILANE, } 90\% \\ & \text{$C_3H_9\text{CIOSi}$} \\ & \text{$HYDROLYTIC SENSITIVITY: } 8: \text{ reacts rapidly with moisture, water, protic sci. } \\ \hline [1825-68-9] & \text{TSCA} & \text{HMIS: } 3-4-1-X \\ \text{SID4236.0} \\ & \text{1.3-DIMETHYLTETRAMETHOXYDISILOXANE, } 95\% \\ & \text{$C_6H_{16}O_5\text{Si}_2$} \\ & \text{$HYDROLYTIC SENSITIVITY: } 7: \text{ reacts slowly with moisture/water} \\ \hline [18186-97-5] & \text{TSCA} & \text{EC } 242-072-8 & \text{HMIS: } 3-3-1-X \\ \text{SID4400.0} \\ & \text{DI-n-OCTYLDICHLOROSILANE} \\ & \text{$C_{16}H_{34}\text{Cl}_2\text{Si}$} \\ & \text{$HYDROLYTIC SENSITIVITY: } 8: \text{ reacts rapidly with moisture, water, protic sci. } \\ \hline [18416-07-4] & \text{HMIS: } 3-2-1-X \\ & \text{SID4400.4} \\ & \text{DI-n-OCTYLDIMETHOXYSILANE} \\ & \text{$C_{18}H_{40}\text{O}_2\text{Si}$} \\ & \text{$Hydrophobic surface treatment} \\ \hline \end{array}$	Flashpoint: -{ 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₆ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	Flashpoint: -{ 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₆ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	Flashpoint: -{ 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₆ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0	Flashpoint: -{ 226.38 Flashpoint: 3 325.44 plyents 316.60	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00 132-4 / 0.2	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ O—Si—CI CH ₃ OCH ₃ CH ₃ (CH ₂) ₇ CI CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₆ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0 (DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYLCHLORO-	Flashpoint: -{ 226.38 Flashpoint: 3 325.44	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ CH ₃ O—Si—CI CH ₃ OCH ₃ CI CH ₃ (CH ₂) ₇	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₆ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0 (DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYLCHLORO-CI	Flashpoint: -{ 226.38 Flashpoint: 3 325.44 plyents 316.60	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00 132-4 / 0.2	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ O—Si—CI CH ₃ OCH ₃ CH ₃ (CH ₂) ₇ CI CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ CH ₃ (CH ₂) ₇ CH ₃	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₈ H ₁₈ O ₅ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₈ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0 (DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYLCHLORO- CI SILANE C ₂₁ H ₄₇ CISi ₂	Flashpoint: -{ 226.38 Flashpoint: 3 325.44 plyents 316.60	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00 132-4 / 0.2	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—Si—OC ₂ CH ₃ CH ₃ CH ₃ CH ₃ O—Si—CI CH ₃ OCH ₃ CI CH ₃ (CH ₂) ₇	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₈ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0 (DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYLCHLORO-CI SILANE C ₂₁ H ₄₇ CISi ₂ Forms bonded phases for reverse phase chromatography	Flashpoint: -{ 226.38 Flashpoint: 3 325.44 plyents 316.60	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00 132-4 / 0.2	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—\$\si-OC_2 CH_3 \$\text{CH}_3\$ \$\text{CH}_3 \text{OCH}_3 \$\text{CH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{CH}_3(\text{CH}_2)_7 \text{Si} \text{CI} \$\text{CH}_3(\text{CH}_2)_7 \text{Si} \text{OCH}_3 \$\text{H}_3(\text{CH}_2)_7 \text{Si} \text{OCH}_3 \$\text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3 \$\text{OCH}_3 \text{OCH}_3	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₂ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sc [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₈ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0 (DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYLCHLORO- CI SILANE C ₂₁ H ₄₇ CISi ₂ Forms bonded phases for reverse phase chromatography See also SIC2266.5	Flashpoint: -5 226.38 Flashpoint: 3 325.44 olvents 316.60	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00 132-4 / 0.2	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834
H—\$\si-OC_2 CH_3 CH_3 CH_5O-\$\si-Cl CH_5 OCH_3	1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14857-34-2] TSCA EC 238-921-7 HMIS: 2-4-1-X SID4210.0 DIMETHYLMETHOXYCHLOROSILANE, 90% C ₃ H ₉ CIOSi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [1825-68-9] TSCA HMIS: 3-4-1-X SID4236.0 1,3-DIMETHYLTETRAMETHOXYDISILOXANE, 95% C ₆ H ₁₆ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18186-97-5] TSCA EC 242-072-8 HMIS: 3-3-1-X SID4400.0 DI-n-OCTYLDICHLOROSILANE C ₁₆ H ₃₄ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic st [18416-07-4] HMIS: 3-2-1-X SID4400.4 DI-n-OCTYLDIMETHOXYSILANE C ₁₈ H ₄₀ O ₂ Si Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [947155-81-9] HMIS: 3-2-1-X SID4401.0 (DI-n-OCTYLMETHYLSILYL)ETHYLDIMETHYLCHLORO-CI SILANE C ₂₁ H ₄₇ CISi ₂ Forms bonded phases for reverse phase chromatography	Flashpoint: -5 226.38 Flashpoint: 3 325.44 olvents 316.60	77 25g \$50.00 165 0°C (86°F) 10g \$32.00 145 / 0.2 25g \$44.00 132-4 / 0.2	0.953 ²⁵ 100g \$162.00 1.010 50g \$128.00 0.940 100g \$143.00	1.3834

name			MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$	
SID4401.5							
CH ₂ Si -Cl (DI-n-OCT)	YLMETHYLSILYL)ETHYLTRICHLOROS	SILANE	432.06	166-8 / 0.1	0.966		
CI C ₁₉ H ₄₁ Cl ₃ Si	=	0					
	s bonded phases for reverse phase HPI OLYTIC SENSITIVITY: 8: reacts rapidly with n		nte				
[475213-02		HMIS: 3-2-1-X	11.0	25g \$120.00			
SID4404.0	-						_
33	CTYLTETRAMETHYLDISILAZANE		357.77	160-5 / 1	0.826	1.4500	
C ₂₀ H ₄₇ NSi ₂			Flashpoint: >	•110°C (>230°F)			
HYDR: [69519-51-	OLYTIC SENSITIVITY: 7: reacts slowly with m	noisture/water HMIS: 2-1-0-X		10g \$49.00			
SID4510.0	•	1 IIVII 3. 2-1-0-X		10g \$49.00			
	DICHLOROSILANE, 95%		253.20	304-5 (-22)	1.2216	1.5819	
C ₁₂ H ₁₀ Cl ₂ Si				57°C (314°F)			
	sity, 25°: 4.1 cSt			pr mouse, LD50: 383 mg/kg			
	e moment: 2.6 debye			ure: 125: 2mm			WO.
Coeffi	icient of thermal expansion: 0.7 x 10 ⁻³		ΔHvap: 15.0				ME
Silico	ne monomer		Specific hear	t: 0.30 cal/g/°			COMMERCIAL
	s diol on contact with water						É
	so SID4588.0						
	OLYTIC SENSITIVITY: 8: reacts rapidly with n		nts	400	01	001 0700 00	
[80-10-4]	TSCA EC 201-251-0	HMIS: 3-1-1-X		100g \$21.00	2kg \$98.00	20kg \$760.00	
SID4510.1	DICHLOROSILANE, 99%		253.20	304-5 (-22)	1.2216	1.5819	00
C ₁₂ H ₁₀ Cl ₂ Si				304-5 (-22) 57°C (314°F)	1.2210	1.0019	WWC
- 12. 110 - 1201				pr mouse, LD50: 383 mg/kg			COMMERCIAL
	OLYTIC SENSITIVITY: 8: reacts rapidly with n		nts		400 000	****	TVE
[80-10-4]	TSCA EC 201-251-0	HMIS: 3-1-1-X		25g \$11.00	100g \$36.00	2kg \$390.00	
SID4525.0			272.42	407.145	4.0000	1 5000	_
C ₁₆ H ₂₀ O ₂ Si	DIETHOXYSILANE		272.42 Flashnoint: 1	167 / 15 75°C (347°F)	1.0329	1.5269	COMMERCIAL
	r pressure, 125°: 2 mm		ι ιαδιτμυπτί. Τ	10 0 (047 1)			IME
Provid	des hydrophobic coatings with good the						RCL.
	OLYTIC SENSITIVITY: 7: reacts slowly with m			05~ 040.00	1000 050 00	01 0005-00	£
[2553-19-7		HMIS: 2-1-0-X		25g \$18.00	100g \$58.00	2kg \$265.00	
SID4535.0	.DIMETHOXYSILANE		244.36	161 / 15	1.0771	1.5447	2
C ₁₄ H ₁₆ O ₂ Si				161 / 15 21°C (250°F)	1.0771	1.0447	МОС
Visco	sity, 25°: 8.4 cSt			- \ • /			ME
	nediate for high temperature silicone res						COMMERCIAL
	OLYTIC SENSITIVITY: 7: reacts slowly with m TSCA EC 229-929-1			1000 640 00	2kg \$190.00		É
[6843-66-9]		HMIS: 3-1-1-X		100g \$16.00	ZNG \$190.00		
SID4552.0 DIPHENYI	METHYLCHLOROSILANE		232.78	295 (-22)	1.128	1.5742	
C ₁₃ H ₁₃ CISi				41°C (286°F)	1.120		
Visco	sity: 5.3 cSt		Vapor pressu	ure, 125°: 3 mm			Co
Surfa	ce tension: 40.0 mN/m		ΔHvap: 149				WW
a-cilvl	lates esters, lactones; precursors to sily	l enolates 1	i nermal con	ductivity: 0.112 W/m°C			COMMERCIAL
,	rson, G. et al. <i>J. Am. Chem. Soc.</i> 1981 ,						TAL
	Vol. 10, p 91; Vol. 12, p 321; Vol. 13, p 7						
	OLYTIC SENSITIVITY: 8: reacts rapidly with n		nts		400 00:22		
[144-79-6]	TSCA EC 205-639-0	HMIS: 3-1-1-X		25g \$26.00	100g \$84.00	2.5kg \$580.00	
SID4552.5			044.44	00.010.05	4.044		
DIPHENYL C ₁₅ H ₁₉ NSi	.METHYL(DIMETHYLAMINO)SILANE		241.41	98-9 / 0.25	1.011		
	OLYTIC SENSITIVITY: 7: reacts slowly with m	noisture/water					
[68733-63-		HMIS: 3-3-1-X		25g \$38.00	100g \$124.00		
SID4553.0							
	METHYLETHOXYSILANE		242.39	100-2 / 0.3 (-27)	1.018	1.5440 25	
C ₁₅ H ₁₈ OSi	oits, OF°, C.F. oC*			65°C (329°F)			
VISCO	sity, 25°: 6.5 cSt		Vapor pressi ΔHvap: 14.8	ure, 125°: 3 mm 3 kcal/mole			
HYDR	OLYTIC SENSITIVITY: 7: reacts slowly with m	noisture/water	<u>ынчар.</u> 14.0	, Rodi/Holo			
[1825-59-8]		HMIS: 2-0-0-X		10g \$26.00	50g \$104.00		
SID4586.0			-		·		_
					0.005		
	NYLTETRAMETHYLDISILAZANE		285.54	96-9 / 0.1	0.985	1.5384	
$C_{16}H_{23}NSi_2$				96-9 / 0.1 62°C (324°F)	0.985	1.5384	
C ₁₆ H ₂₃ NSi ₂	OLYTIC SENSITIVITY: 7: reacts slowly with m	noisture/water HMIS: 3-1-1-X			0.985 25g \$144.00	1.5384	

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$	
CH ₃ CH ₂ CH ₂ —Si—NH	SID4591.0 1,3-DI-n-PROPYLTETRAMETHYLDISILAZANE C. H. NISI	217.51	84 / 9	0.80	1.429	
CH ₃	C ₁₀ H ₂₇ NSi ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [14579-90-9] HMIS: 3-2-1-X	Flashpolni.	65°C (149°F) 25g \$140.00			
CH ₃ CI	SID4598.0 DI(p-TOLYL))DICHLOROSILANE, tech-95 $C_{14}H_{14}Cl_2Si$ Contains 4,4'-dimethylbiphenyl Forms polymers with liquid crystal behavior. 1	281.26	225-6 / 50	1.10	1.568	T D D O F
CH ₃	1. Lee, M. et al. Polymer 1993, 34, 4882. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solv [18414-38-5] HMIS: 3-2-1-X	vents	10g \$40.00	50g \$160.00		
CH ₃ OCH ₃ OCH ₃	SID4599.0 DI(p-TOLYL)DIMETHOXYSILANE $C_{16}H_{20}O_2Si$ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	272.42	140 / 0.5	1.023	1.5353 ²⁵	
СН ₃ (СН ₂) ₂₀ СҢ ₂ ,СІ	[92779-72-1] HMIS: 3-2-1-X SID4620.0 DOCOSYLMETHYLDICHLOROSILANE, blend	402.62	25g \$158.00	0.02		
H ₃ C Cl	$\begin{aligned} &C_{23}H_{48}CI_2Si & Contains \ C_{20}\ to \ C_{24}\ homologs \\ & & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solven} \end{aligned}$		218-20 / 0.5 (21-9) 172°C (342°F)	0.93		
СН ₃ (СН ₂) ₂₀ СҢ ₂ СІ ,Si	[67892-56-2] TSCA EC 267-590-1 HMIS: 3-1-1-X	444.04	50g \$130.00 210 / 0.2 (20-8) 200°C (392°F)	0.94		
Cı Cı	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solv [7325-84-0] TSCA EC 230-802-8 HMIS: 3-1-1-X		25g \$85.00			
OC ₂ H ₅ CH ₃ (CH ₂) ₂₁ - Si - OC ₂ H ₅ OC ₂ H ₅	SID4622.0 DOCOSYLTRIETHOXYSILANE, blend $C_{28}H_{60}O_3Si$ Contains C_{20} to C_{24} homologs HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	472.87	(18-22	0.86		
-2-3	HMIS: 1-1-1-X SID4627.0		25g \$116.00			
CH ₃ (CH ₂) ₁₀ CH ₂ CH ₃ H ₃ C C1	$\begin{split} & \text{DODECYLDIMETHYLCHLOROSILANE} \\ & \text{C}_{14}\text{H}_{31}\text{ClSi} \\ & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents.} \end{split}$	262.94 vents	291-3	0.865	1.445	
СН ₃ (СН ₂₎₁₀ СҢ ₂ СІ	[66604-31-7] EC 266-421-9 HMIS: 3-2-1-X SID4628.0 DODECYLMETHYLDICHLOROSILANE	283.36	25g \$62.00 124-7 / 3	0.955	1.4581	
H ₃ C Si CI	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		143°C (289°F) 25g \$52.00			
CH ₃ (CH ₂) ₁₀ CH ₂ OCH ₂ CH ₃ H ₄ C OCH ₂ CH ₃	SID4629.0 DODECYLMETHYLDIETHOXYSILANE $C_{17}H_{38}O_2Si$	302.57 Flashpoint:	140 / 0.5 152°C (305°F)	0.845 ²⁵		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [60317-40-0] TSCA EC 262-170-4 HMIS: 2-1-0-X SID4630.0		25g \$59.00			
CH ₃ (CH ₂) ₁₀ CH ₂ SiCl ₃	DODECYLTRICHLOROSILANE $C_{12}H_{25}CI_3Si$		120 / 3 (-30) 165°C (329°F)	1.024	1.4581	COMMERCIAL
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solv [4484-72-4] TSCA EC 224-769-9 HMIS: 3-1-1-X SID4632.0	vents	25g \$14.00	2kg \$384.00		TAL
$CH_3(CH_2)_{10}CH_2Si(OC_2H_5)_3$	$\begin{split} & \text{DODECYLTRIETHOXYSILANE} \\ & \text{C_{18}H}_{40}\text{O_3Gi} \\ & \text{HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water} \end{split}$	332.60 Flashpoint:	152-3 / 3 >110°C (>230°F)	0.884 ²⁵	1.4330 ²⁵	
	[18536-91-9] TSCA EC 242-409-9 HMIS: 2-1-0-X SIE4661.0 EICOSYLTRICHLOROSILANE, 95%	415.90	25g \$29.00 225-7 / 3	100g \$94.00 0.940		
CH ₃ (CH ₂) ₁₈ CH ₂ SiCl ₃	$ \begin{array}{lll} & C_{20}H_4\mbox{,} Cl_3Si \\ & \mbox{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solv} \\ & [18733-57-8] & TSCA & EC 242-545-9 & HMIS: 3-0-1-X \end{array} $		230°C (446°F) 25g \$160.00			
CH₃ CH₃CH₂—Şi—Cl	SIE4892.0 ETHYLDIMETHYLCHLOROSILANE C ₄ H ₁₁ ClSi	122.67 Flashpoint:	91 -4°C (25°F)	0.8756	1.4050	
ĊН ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solv [6917-76-6] HMIS: 3-4-1-X	vents	10g \$26.00	50g \$104.00		

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
CH ₃ , Cl	SIE4896.0 ETHYLMETHYLDICHLOROSILANE C;H ₈ Cl ₇ Si	143.09 Flashpoint: 2	100 2°C (36°F)	1.0630	1.4197
CII₃CII₂ `CI	Dipole moment: 2.32 debye HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, wa	·	25g \$34.00	100g \$110.00	
OSi(CH ₃) ₃	SIE4897.0 (ETHYLMETHYLKETOXIMINO)TRIMETHYLSILANE, 95% O-(TRIMETHYLSILYL)OXIME-2-BUTANONE	159.30	65 / 75	0.826 25	1.4125 ²⁵
H₃C CH₂CH₃	L	er S: 2-3-1-X	10g \$41.00		
H ₃ CH ₂ CH ₃ CH ₂ CH ₂ Si = Cl	SIE4897.2 m,p-ETHYLPHENETHYLDIMETHYLCHLOROSILANE C ₁₂ H ₁₉ CISi tech-95	226.82	100 / 0.4	1.00	1.520
ĊH.	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/wate [253279-88-8] HMIS SIE4897.5	er S: 3-2-1-X	5g \$78.00		
5CH ₂ CH ₂ CH ₂ Si(OMc) ₃	m,p-ETHYLPHENETHYLTRIMETHOXYSILANE, tech-95 C ₁₃ H ₂₂ O ₃ Si Mixed isomers Component in optical hard coating resins HYDROLYTIC SENSITIVITY: 7: reads slowly with moisture/wate	•	93-6 / 4 102°C (216°F)	0.996	1.4776 ²⁵
1 1132 1130 14 11370	,	er S: 3-2-1-X	25g \$102.00		
о осен, о н _а сн ₂ —și—о-сен, осен,	SIE4899.0 ETHYLTRIACETOXYSILANE C ₈ H ₁₄ O ₈ Si Liquid cross-linker for silicone RTVs	243.28 Flashpoint:	107-8 / 8 (7-9) 106°C (223°F)	1.143	1.4123
0	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/wate [17689-77-9] TSCA EC 241-677-4 HMIS	er S: 3-1-1-X	25g \$10.00	2kg \$148.00	
ÇI CH₃CH₂−Şi−CI CI	SIE4901.0 ETHYLTRICHLOROSILANE C ₂ H ₅ Cl ₃ Si Viscosity: 0.48 cSt Dipole moment: 2.1 Coefficient of thermal expansion: 1.5 x 10 ⁻³ Vapor pressure, 20°: 26 mm Vapor pressure, 30.4°: 66 mm	Critical temp	oral rat, LD50: 1,330 mg/kg : 287* :44 kcal/mole) kcal/mole kcal/mole	1.237	1.4260
	Employed in the cobalt-catalyzed Diels-Alder approach 1. Hilt, G.; Danz, M. Synthesis 2008, 2257. F&F: Vol. 16, p 98. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, wa [115-21-9] TSCA EC 204-072-6 HMIS	to 1,3-disubstituted and 1,2,	3-trisubstituted benzenes. ¹	F00 \$00.00	4kg \$176.00
	[115-21-9] TSCA EC 204-072-6 HMIS SIE4901.2	5. 5-5-1-7	25g \$10.00	500g \$29.00	4kg \$170.00
OC ₂ H ₅ H ₃ CH ₂ —Si—OC ₂ H ₅ OC ₂ H ₅	ETHYLTRIETHOXYSILANE C ₈ H ₂₀ O ₃ Si Viscosity: 0.70 cSt Vapor pressure, 50°: 10 mm	TOXICITY:	158-9 (-78) 40°C (104°F) oral rat, LD50: 13,720 mg/kg temperature: 235°C (455°F)	0.896	1.3955
	Coefficient of thermal expansion: 1.5 x 10 ⁻³ Specific heat: 0.43 cal/g/*	ΔHvap: 7.8 γc of treated	erature: 314° kcal/mole surfaces: 26.3 mN/m		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/wate [78-07-9] TSCA EC 201-080-1 HMIS	er 6: 3-2-1-X	100g \$37.00	500g \$148.00	
OCH ₃ CH ₂ —Si—OCH ₃ OCH ₃	SIE4901.4 ETHYLTRIMETHOXYSILANE $C_5H_{14}O_3Si$ Viscosity: 0.5 cSt	150.25 Flashpoint: 2 ΔHcomb: 3,4		0.9488	1.3838
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				

 $n_{\scriptscriptstyle D}^{\scriptscriptstyle \ 20}$

D4²⁰

bp/mm (mp)

MW

Control	PP1-GC18 GLASSCLAD® 1	Q				0.88	
		YL FUNCTIONAL SILANE, 20% in t-l	outanol/diacetone alco	hol		0.00	
	Hazy, ambe	,	outarior alacotorio alco	Flashpoint: 10°C (50°	'F)		
	•	ed glass surface: 31 mN/m		Pour point: 4°C	• /		
		of friction of treated glass surface: 0.1	2 - 0.3	1 our point. 4 o			
Glassclad® 18		sistivity of treated surface: 1.2 x 10 ¹³ c					
Glassolad To		ersible hydrophobic surface treatmen					
Surface conductivity of glass substrates	- "	ation information see Gelest's Perform		ıre			
is reduced by application of Glassclad®		lood protein adsorption.1					
18. Surface arc-tracking is eliminated or		B. et al. In Silanes Surfaces & Interfac	es; Leyden, D., Ed; Go	ordon & Breach: 1986;	p 91.		
fluorescent light bulbs		C SENSITIVITY: 7: reacts slowly with mois		·	•		
· ·		TSCA	HMIS: 2-4-1-X		100g \$20.00	1.5kg \$172.00	15kg \$399.00
	SIH5840.4						
		LUORO-1,1,2,2-TETRAHYDRODEC	YL)-	540.72	197-8	1.51	1.3410
ÇH ₃	*		,		101 0		110110
CF-(CF-)-CH-CH- —Si—Cl	PERFLUORODEC	OROSILANE YL-1H,1H,2H,2H-DIMETHYLCHLOROSILA	ANE	oo. porrao.			
CH	C ₁₂ H ₁₀ CIF ₁₇ Si	, , ,					
0.73	Derivatizing	g agent for fluorous phase synthesis					
	HYDROLYTI	C SENSITIVITY: 8: reacts rapidly with mois	sture, water, protic solvent	S			
	[74612-30-9]		HMIS: 3-2-1-X		5g \$44.00	25g \$176.00	
	SIH5840.6						
$CF_3(CF_2)_7CH_2CH_2$ — Si — CI	(HEPTADECAFL	LUORO-1,1,2,2-TETRAHYDRODECY	YL)-	561.14	205-7 (26-7)	1.630	1.345
CF ₃ (CF ₂) ₇ CH ₂ CH ₂ -\$i-Cl	METHYLDICHLO		Packaged over copp	oer powder			
ĊI	$C_{11}H_7CI_2F_{17}Si$						
	HYDROLYTI	C SENSITIVITY: 8: reacts rapidly with mois		8			
	[3102-79-2]		HMIS: 3-2-1-X		5g \$52.00	25g \$208.00	
	SIH5841.0						
	(HEPTADECAFL	LUORO-1,1,2,2-TETRAHYDRODEC\	YL)-	581.56	216-8	1.703	1.3490
Çl	TRICHLOROSIL	ANE	Packaged over copp	oer powder			
CF ₃ (CF ₂) ₇ CH ₂ CH ₂ — si—Cl	PERFLUORODEC	YL-1H,1H,2H,2H-TRICHLOROSILANE					
Cl	$C_{10}H_4CI_3F_{17}Si$			TOXICITY: oral rat, L	.D50: >5,000 mg/kg		
		ed surfaces: 12 mN/m.1					
		, J. et al. <i>Langmuir</i> 1994 , <i>10</i> , 4367.					
		IC SENSITIVITY: 8: reacts rapidly with mois		S	Fa #20.00	25~ \$156.00	
	[78560-44-8]	TSCA	HMIS: 3-2-1-X		5g \$39.00	25g \$156.00	
	SIH5841.2						25
OC-He	(HEPTADECAFL	LUORO-1,1,2,2-TETRAHYDRODECY			103-6 / 3	1.407	1.3419
CE-(CE-)-CH-CH- —Si—OC-H-	TRIETHOXYSIL	ANE	Packaged over cop	oer powder			
CF ₃ (CF ₂) ₇ CH ₂ CH ₂ — Si — OC ₂ H ₅ OC ₂ H ₅	C ₁₆ H ₁₉ F ₁₇ O ₃ Si	in combination with polydimathograpile	avana giyaa hard bydr	anhahia agatinga 1			
352.5		in combination with polydimethoxysild et al. Jpn. Kokai JP 06,293,782, 1993					
	See also SIP		5, Onem. Abstr. 1999,	122. 1000174.			
		IC SENSITIVITY: 7: reacts slowly with mois	ture/water				
	[101947-16-4]	,,	HMIS: 3-2-1-X		5g \$45.00	25g \$180.00	
	SIH5841.5					-	
		LUORO-1,1,2,2-TETRAHYDRODECY	/I)-	568.30	247	1.54	1.331 25
	TRIMETHOXYS		Packaged over cop		241		
осн,	C ₁₃ H ₁₃ F ₁₇ O ₃ Si		g				Water droplets on silicon wafer
CU3(CU2)/CH2CH2 —\$i —OCH3		rface contact angle, water: 115°					treated with SIH5841.5 exhibit
OCII,	γc of treate	ed surfaces: 12 mN/m					high contact angle
	Forms inor	ganic hybrids with photoinduceable re	efractive index reduction	n.¹			
	1. Park, J	U. et al. J. Mater. Chem. 2003, 13, 73	38.				
	HYDROLYTI	C SENSITIVITY: 7: reacts slowly with mois					
	[83048-65-1]	TSCA-S	HMIS: 3-2-1-X		5g \$42.00	25g \$168.00	
	SIH5842.0						
F ₃ C	(3-HEPTAFLUO	ROISOPROPOXY)PROPYLTRICHLO	ORO-	361.55	85-7 / 35	1.497	1.3710
F-C-O-CH2CH2CH2SiCL	SILANE						
F ₃ C	C ₆ H ₆ Cl ₃ F ₇ OSi						
		etting surface area: 356 m²/g					
		C SENSITIVITY: 8: reacts rapidly with mois		S			
	[15538-93-9]	EC 239-589-6	HMIS: 3-3-1-X		5g \$69.00		

	name		MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
	SIH5842.2 3-(HEPTAFLUOROISOPROPOXY)PROPYL- TRIMETHOXYSILANE		348.29	39 / 0.5		1.3841
F ₃ C F—C—O—CH ₂ CH ₂ CH ₂ Si(OC F ₃ C	C ₉ H ₁₆ F ₇ O ₄ Si Branched fluoroalkylsilane with low surface energy Contact angle, water on treated glass surface: 10 Aligns liquid crystals. 1. Jap. Pat. 57177121, 1982	gy 99-112°				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu [19116-61-1]	ure/water HMIS: 3-2-1-X		10g \$96.00		
	SIH5845.0					
CH ₃ (CH ₂) ₆ -si - CH ₃ Cl	n-HEPTYLMETHYLDICHLOROSILANE C ₈ H ₁₈ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist [18395-93-2] TSCA EC 242-274-6	ure, water, protic solvents	213.22 Flashpoint: 66°C		0.978	1.4396 ²⁵
	[18395-93-2] TSCA EC 242-274-6 SIH5846.0	ПIVII5: 3-2-1-A		25g \$82.00		
CH ₃ (CH ₂) ₆ SiCl ₃	n-HEPTYLTRICHLOROSILANE C ₇ H ₁₅ Cl ₃ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist	ure water protic solvent	233.64 Flashpoint: 64°C	211-2 (147°F)	1.087	1.4439 ²⁵
	[871-41-0] TSCA EC 212-807-7 SIH5917.0	HMIS: 3-2-1-X		25g \$80.00		
CH ₃ (CH ₂) ₂₅ SiCl ₃	HEXACOSATRICHLOROSILANE, blend		500.15	(35-55	5)	
C113(C112)25SIC13	$\begin{split} &C_{2\text{B}} H_{53} Cl_3 Si & \text{Contains } C_{2\text{a}} Cl_{30} \text{ ho} \\ & \text{A distilled cut product with more reproducible dep} \\ & HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu$	osition than triacontyl	silanes			
	[60085-14-5]	HMIS: 3-3-1-X		25g \$68.00		
n a-cuer en Van en en en en	SIH5918.0 HEXADECAFLUORODODEC-11-EN-1-YLTRICHLOR SILANE	0-	589.61	94-6 / 0.6	1.626	1.3713
H ₂ C=CHCF ₂ (CF ₂) ₆ CF ₂ CH ₂ CH ₂ SiCl ₃	C ₁₂ H ₇ Cl ₃ F ₁₆ Si Forms self-assembled monolayers; reagent for in HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist			1.0g \$160.00		
CH ₃ (CH ₂) ₁₄ CH ₂ SiCl ₃	SIH5920.0 n-HEXADECYLTRICHLOROSILANE, 95% $C_{16}H_{33}Cl_3Si$		359.88 Flashpoint: 154°0	202 / 10 C (309°F)	0.98	1.4592
	yc of treated surfaces: 21 mN/m HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist [5894-60-0] TSCA EC 227-575-2	ure, water, protic solvents HMIS: 3-1-1-X	S	25g \$20.00	100g \$65.00	
$\mathrm{CH_{3}(CH_{2})_{14}CH_{2}Si(OC_{2}H_{5})_{3}}$	SIH5922.0 HEXADECYLTRIETHOXYSILANE, 95% $C_{22}H_{48}O_3Si$		388.71	160-1 / 1 (-9)	0.888	1.4370
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu [16415-13-7] TSCA EC 240-465-9	ure/water HMIS: 2-1-1-X		25g \$23.00	100g \$75.00	
CH ₃ (CH ₂) ₁₄ CH ₂ Si(OCH ₃) ₃	SIH5925.0 HEXADECYLTRIMETHOXYSILANE, 95% C ₁₉ H ₄₂ O ₃ Si Viscosity: 7 cSt Employed as rheology modifier for moisture cross		346.63 Flashpoint: 122°(Autoignition temp		0.89	1.4356
	Modifier for moisture crosslinkable polyethylene (Water scavenger HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistu	ure/water				
	[16415-12-6] TSCA EC 240-464-3 SIH6102.0 1,1,3,3,5,5-HEXAMETHYLCYCLOTRISILAZANE C ₆ H ₂₁ N ₃ Si ₃	HMIS: 2-2-1-X	219.51 Flashpoint: 61°C	25g \$18.00 186-8 (-10) (142°F)	2kg \$290.00 0.922	16kg \$1,536.00
H ₃ C Si Si CH ₃ H ₃ C CH ₃ H ₃ C CH ₃	Viscosity, 20°: 1.7 cSt Dipole moment: 0.92 Modifies positive resists for O ₂ plasma resistance Polymerizes to polydimethylsilazane oligomer in Silylation reagent for diols. ³ 1. Babich, E. et al. <i>Microelectron. Eng.</i> 1990, 11, 2. Blum, Y. et al. US Patent 4,216,383, 1986; US 3. Birkofer, L. et al. <i>J. Organomet. Chem.</i> 1980, 1	presence of Ru/H _{2.} ² 503. B Patent 4,788,309, 19 87, 21.	ΔHform: 132 kca Dielectric constan	al/mole		COMMERCIAL
	See also SID4074.4 1,1-DIMETHYLCYCLOSILA HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [1009-93-4] TSCA EC 213-773-6			25g \$29.00	100g \$94.00	2kg \$636.00

 $n_{\scriptscriptstyle D}^{\scriptscriptstyle \ 20}$

1.4080

D4²⁰

0.7742

bp/mm (mp)

MW

161.39

name SIH6110.0

HEXAMETHYLDISILAZANE

CH_	00
CONVERTS acid childrides and alcoholis to animies in a three-component reaction.* Reads with browning and storoles to from pyrimidines.* 1. Li H-H et al. Eur. J. Org. Chem. 2008, 3823. 2. Tyggangian, S. and Chakvraneri, P. K. Transhold on Lett. 2005, 46, 7899. F8F. Vol. 1, p. 427, Vol. 2, p. 199, Vol. 5, p. 323, Vol. 6, p. 273, Vol. 7, p. 167, Vol. 8, p. 29, Vol. 8, p. 234; Vol. 1. p. 38, Vol. 12, p. 239, Vol. 13, p. 141, Vol. 41, p. 200. PMORE/LITIC SERVITIVE? Pressure shorly with monitary water pressure and press	00
Reacts with formancies and ketones to form pythindines." 1. Li, H.+H. et al. Ett. / J. Og. Chem. 2008, 82/3. 2. Tyngarnjan, S. and Chakravarshy, P. K. Terahedron Latt. 2005, 46, 7889. F8F. Vel. 1, 9 427, Vel. 2, p. 159, Vel. 5, p. 232, Vel. 6, p. 273, Vel. 7, p. 167, Vel. 8, p. 29, Vol. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 167, Vel. 8, p. 29, Vel. 9, p. 234; Vel. 11, p. 24, Vel. 11, p.	00
SH610.1	
HEXAMETHYLDISILAZANE, 99% 161.39 126-7 0.7742 1.4080	
CH3 CH3 CH3 CH3 CH3 CH4 Sport Alberton promoter	
SIH6165.6	
SIH6165.6 HEXYLMETHYLDICHLOROSILANE	
HEXYLMETHYLDICHLOROSILANE	
HyDRQLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, profits colvents	
14799-94-1 TSCA EC 238-864-8 HMIS: 3-2-1-X 25g \$34,00	
SIH6167.0	
CI Sci Ci	
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 1928-85-4 TSCA EC 213-178-1 HMIS: 3-2-1-X 25g \$20.00 100g \$65.00	
1928-65-4 TSCA EC 213-178-1 HMIS: 3-2-1-X 25g \$20.00 100g \$65.00	
SIH6167.5 CH ₃ (CH ₂) ₄ CH ₂ Si(OC ₂ H ₅) ₃ HEXYLTRIETHOXYSILANE C ₁₂ H ₂₉ O ₃ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18166-37-5] HEXYLTRIMETHOXYSILANE SIH6168.5 HEXYLTRIMETHOXYSILANE C ₉ H ₂₂ O ₃ Si SUrface modification of TiO ₂ pigments improves dispersion HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [3069-19-0] TSCA EC 221-331-9 HMIS: 3-2-1-X SII6452.5 ISOBUTYLDIMETHYLCHLOROSILANE C ₆ H ₁₅ CISi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [27490-70-6] EC 248-493-3 HMIS: 2-1-1-X 25g \$31.00 100g \$100.00 1.408 ²⁵ Flashpoint: 62°C (144°F) SUrface Flashpoint: 62°C (144	
Cti_H2gO_3Si	
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18166-37-5] HMIS: 2-1-1-X 25g \$31.00 100g \$100.00 SIH6168.5 HEXYLTRIMETHOXYSILANE 206.35 202-3 0.911 25 1.4070 CI13(CI12)4CI12Si(OCI13)3 C ₉ H ₂₂ O ₃ Si Flashpoint: 62°C (144°F) Surface modification of TiO ₂ pigments improves dispersion HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [3069-19-0] TSCA EC 221-331-9 HMIS: 3-2-1-X 50g \$31.00 2kg \$190.00 SII6452.5 ISOBUTYLDIMETHYLCHLOROSILANE 150.72 131-3 0.863 1.4187 25 C ₉ H ₁₅ CISi Flashpoint: 18°C (64°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [27490-70-6] EC 248-493-3 HMIS: 3-4-1-X 10g \$32.00 H ₃ C CHCH ₂ Si — OCH ₃ SII6452.8 ISOBUTYLDIMETHYLDIMETHOXYSILANE 162.30 63 / 40 0.851 1.396 C ₇ H ₁₅ O ₂ Si Flashpoint: 38°C (100°F)	
18166-37-5 HMIS: 2-1-1-X	
SIH6168.5 HEXYLTRIMETHOXYSILANE C ₉ H ₂₂ O ₃ Si Surface modification of TiO ₂ pigments improves dispersion HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [3069-19-0] TSCA EC 221-331-9 HMIS: 3-2-1-X 50g \$31.00 2kg \$190.00 SII6452.5 ISOBUTYLDIMETHYLCHLOROSILANE TSCHCH ₂ Si — CI H ₃ C C ₆ H ₁₅ CISi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [27490-70-6] EC 248-493-3 HMIS: 3-4-1-X 10g \$32.00 H ₃ C CHCH ₂ Si — OCH ₃ CHCH ₂ Si — OCH ₃ H ₃ C CHCH ₂ Si — OCH ₃ SII6452.8 SII6452.8 ISOBUTYLDIMETHYLDIMETHOXYSILANE 162.30 63 / 40 0.851 1.396 C ₇ H ₁₆ O ₂ Si Flashpoint: 38°C (100°F)	
C ₉ H ₂₂ O ₃ Si Surface modification of TiO ₂ pigments improves dispersion HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [3069-19-0] TSCA EC 221-331-9 HMIS: 3-2-1-X 50g \$31.00 2kg \$190.00 SII6452.5 ISOBUTYLDIMETHYLCHLOROSILANE 150.72 131-3 0.863 1.4187 ²⁵ C ₆ H ₁₆ CISi Flashpoint: 18°C (64°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [27490-70-6] EC 248-493-3 HMIS: 3-4-1-X 10g \$32.00 H ₃ C CHCH ₂ Si — OCH ₃ SII6452.8 ISOBUTYLDIMETHYLDIMETHOXYSILANE 162.30 63 / 40 0.851 1.396 C ₇ H ₁₆ O ₂ Si Flashpoint: 38°C (100°F)	
Surface modification of TiO ₂ pigments improves dispersion HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [3069-19-0] TSCA EC 221-331-9 HMIS: 3-2-1-X 50g \$31.00 2kg \$190.00 SII6452.5 ISOBUTYLDIMETHYLCHLOROSILANE 150.72 131-3 0.863 1.4187 25 CHCH ₂ Si — CI H ₃ C CHCH ₂ Si — CI H ₃ C CHCH ₂ Si — OCH ₃ SII6452.8 H ₃ C CHCH ₂ Si — OCH ₃ SII6452.8 SII6452.8 SII6452.8 SII6452.8 SII6452.8 ISOBUTYLMETHYLDIMETHOXYSILANE 162.30 63 / 40 0.851 1.396 C ₇ H ₁₆ O ₂ Si Flashpoint: 38°C (100°F)	
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [3069-19-0] TSCA EC 221-331-9 HMIS: 3-2-1-X 50g \$31.00 2kg \$190.00 H ₃ C CHCH ₂ Si - CI SIGNUTYLDIMETHYLCHLOROSILANE 150.72 131-3 0.863 1.4187 25 H ₃ C CHCH ₂ Si - CI HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 150.72 131-3 0.863 1.4187 25 Flashpoint: 18°C (64°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 150.72 131-3 0.863 1.4187 25 Flashpoint: 18°C (64°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 162.30 63 / 40 0.851 1.396 H ₃ C CH ₃ SII6452.8 H ₃ C CH ₄ SII6452.8 H ₃ C CH ₄ SII6452.8 H ₃ C CH ₄ SII6452.8 Flashpoint: 38°C (100°F)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{CHCH}_{2}\text{Si} - \text{CI} \\ \text{Cl}_{3} \\ \text{ISOBUTYLDIMETHYLCHLOROSILANE} \\ & ISOBUTYLDIMETHYLCHLOROSI$	
$\begin{array}{c} \text{CHCH}_2\text{Si} - \text{CI} \\ \text{H}_3\text{C} \\ \end{array} \\ \begin{array}{c} \text{CHCH}_2\text{Si} - \text{CI} \\ \text{CII}_3 \\ \end{array} \\ \begin{array}{c} \text{ISOBUTYLDIMETHYLCHLOROSILANE} \\ \text{C}_6\text{H}_5\text{CISi} \\ \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents} \\ \hline \\ \text{IZ7490-70-6]} \\ \text{EC 248-493-3} \\ \end{array} \\ \begin{array}{c} \text{HMIS: 3-4-1-X} \\ \text{IOg $32.00} \\ \end{array} \\ \\ \begin{array}{c} \text{CHCH}_2\text{Si} - \text{OCH}_3 \\ \text{OCH}_3 \\ \end{array} \\ \begin{array}{c} \text{CHCH}_2\text{Si} - \text{OCH}_3 \\ \text{OCH}_3 \\ \end{array} \\ \begin{array}{c} \text{ISOBUTYLMETHYLDIMETHOXYSILANE} \\ \text{C}_7\text{H}_{16}\text{O}_2\text{Si} \\ \end{array} \\ \begin{array}{c} \text{I62.30} \\ \text{Flashpoint: 38^{\circ}C (100^{\circ}\text{F})} \\ \end{array} \\ \begin{array}{c} \text{O.863} \\ \text{I31-3} \\ \text{IO.863} \\ \text{I.4187} \\ \end{array} \\ \begin{array}{c} \text{A.187} \\ \text{A.187} \\ \text{A.187} \\ \text{IO.863} \\ \text{IO.863} \\ \text{III.4187} \\ \text{IO.863} \\ \text{III.4187} \\ \text{III.4187} \\ \text{IO.864} \\ \text{IO.864} \\ \text{III.4187} \\ \text{IO.864} \\ \text{IO.865} \\ \text{III.4187} \\ \text{IO.865} \\ \text{III.4187} \\ \text{IO.865} \\ \text{III.4187} \\ \text{III.4187} \\ \text{IO.865} \\ \text{III.4187} \\ \text{IO.865} \\ \text{III.4187} \\ \text{III.4187} \\ \text{IO.865} \\ \text{III.4187} \\ II$	
CH3 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [27490-70-6] EC 248-493-3 HMIS: 3-4-1-X 10g \$32.00 H ₃ C CH ₃ SII6452.8 CH3 ISOBUTYLMETHYLDIMETHOXYSILANE 162.30 63 / 40 0.851 1.396 H ₃ C OCH ₃ C7H ₁₆ O ₂ Si Flashpoint: 38°C (100°F)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H_3C O_{CH_2} $C_7H_{18}O_2Si$ Flashpoint: 38°C (100°F)	
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	
[18293-82-8] EC 242-171-6 HMIS: 2-2-1-X 25g \$57.00	
CI SII6453.0 H ₃ C ISOBUTYLTRICHLOROSILANE 191.56 140 1.162 1.4335	
CHCH ₂ S(=C)	
H ₃ C C ₄ H ₉ Cl ₃ Si Flashpoint: 37°C (99°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	
[18169-57-8] TSCA EC 242-053-4 HMIS: 3-3-1-X 25g \$12.00 100g \$39.00	
SII6453.5	
H_{3} C $C_{2}H_{5}$ ISOBUTYLTRIETHOXYSILANE 220.38 190-1 0.9104 1.3908 CHCH ₂ Si $-OC_{2}H_{5}$ $C_{10}H_{24}O_{3}Si$ Flashpoint: 63°C (145°F)	
CHCH ₂ Si \rightarrow CC ₂ H ₅ C ₁₀ H ₂₄ O ₃ Si Flashpoint: 63°C (145°F) H ₃ C OC ₂ H ₅ TOXICITY: oral rat, LD50: >5,000 mg/kg	
Hydrophobic surface treatment for microporous minerals	
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [17980-47-1] TSCA EC 402-810-3 HMIS: 2-2-1-X 25g \$10.00 2kg \$92.00 16kg \$52i	
21300 71 1]	00

	name	MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
ı₃с, осн₃	SII6453.7 ISOBUTYLTRIMETHOXYSILANE TRIMETHOXYSILYL-2-METHYLPROPANE C ₇ H ₁₈ O ₃ Si		154 42°C (108°F) oral rat, LD50: >2,000 mg/kg 8 cSt	0.933	1.3960
CHCH ₂ Si —OCH ₃		ture provides hydropho rchitectural coatings	bic surface		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18395-30-7] TSCA EC 242-272-5 HMIS: 3-2-1->	X	50g \$11.00	2kg \$110.00	17kg \$493.00
CH ₃ CH ₃ CH ₃	SII6456.6 ISOOCTYLDIMETHYLCHLOROSILANE	206.83	83-5 / 10	0.852	
CH2CHCH2Si-CI	C ₁₀ H ₂₃ CISi	200.03	03-37 10	0.002	
CH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic [79957-95-2] EC 279-358-7 HMIS: 3-3-1-)		25g \$72.00		
	[79957-95-2] EC 279-358-7 HMIS: 3-3-1-3 SII6457.0	^	25g \$72.00		
ÇH ₃ ÇH ₃	ISOOCTYLTRICHLOROSILANE	247.67	117 / 50	1.0684	1.4510
I ₃ CCII ₂ CHCII ₂ SiCl ₃	1-TRICHLOROSILYL-2,4,4-TRIMETHYLPENTANE	Flashpoint: 8	85°C (185°F)		
CH ₃	C ₈ H ₁₇ Cl ₃ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic	solvents			
	[18379-25-4] TSCA EC 242-262-0 HMIS: 3-2-1-)		25g \$22.00	100g \$72.00	
	SII6457.5				
CH ₃ CH ₃ OC ₂ H ₅	ISOOCTYLTRIETHOXYSILANE C ₁₄ H ₂₇ O ₃ Si	276.48	236 (<-80)	0.880	1.4160
CH2CHCH2Si-OC3H5	Viscosity: 2.1 cSt		>65°C (>150°F) oral rat, LD50: >2,000 mg/kg		
CH ₃ OC ₂ H ₅	Vapor pressure, 112°: 10mm	Autoignition	temperature: 265°C		
002115	Architectural water-repellent				
	Water scavenger for sealed lubricant systems HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[35435-21-3] TSCA EC 252-558-1 HMIS: 1-2-1-3	X	50g \$12.00	2kg \$168.00	
и си	SII6458.0				
·H ₃	ISOOCTYLTRIMETHOXYSILANE	234.41	90 / 10	0.887	1.4176
CH ₃	C ₁₁ H ₂₆ O ₃ Si Viscosity: 2 cSt.	•	52°C (126°F) temperature: 310°C		
	Component in Anti-Graffiti coatings				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	,	05 444.44	400 000 00	
	[34396-03-7] TSCA EC 251-995-5 HMIS: 3-2-1-)	X	25g \$12.00	100g \$39.00	2kg \$190.00
H.C. CH ₃	SII6462.0 ISOPROPYLDIMETHYLCHLOROSILANE	136.69	114	0.873	1.4138
CIIși—CI	C ₅ H ₁₃ CISi	Flashpoint:		0.070	1.1100
H ₃ C CH ₃	See also SID4065.0				
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protice [3634-56-8] TSCA HMIS: 3-4-1-)		25g \$52.00	100g \$169.00	
	SIM6492.4	•	۷۷g پاکک.۵۵	.009 \$100.00	
	3-(p-METHOXYPHENYL)PROPYLMETHYLDICHLORO-	263.24	115-6 / 0.3	1.13	
CH-CH-CH-SI -CH	SILANE		>110°C (>230°F)		
CI CI	C ₁₁ H ₁₆ Cl ₂ OSi	a al vanta			
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protice [134438-26-9] HMIS: 3-1-1-)		25g \$74.00		
	SIM6492.5		Q +. 1100		
CH-CH-CH-Si =CI	3-(p-METHOXYPHENYL)PROPYLTRICHLOROSILANE	283.66	128-9 / 1	1.226	
CI CI	C ₁₀ H ₁₃ Cl ₃ OSi		>110°C (>230°F)		
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protice [163155-57-5] HMIS: 3-1-1-)		25g \$74.00		
CH ₃ O	SIM6492.8		g ψι π.υυ		
H ₂ C CH ₃	(1-METHOXY-2-PROPOXY)TRIMETHYLSILANE	162.30	132 (-40)	0.83	1.3965
CH	C ₇ H ₁₈ O ₂ Si	Flashpoint: 2			
H ₃ C —Şi – CH ₃	Viscosity: 2 cSt Vapor pressure, 50°: 30 mm				
CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[55816-62-1] HMIS: 3-4-1->	X .	25g \$70.00		
	SIM6511.0				
CHCH C	p-(METHYLPHENETHYL)METHYLDICHLOROSILANE, -	233.21	103-5 / 2	1.10	1.5100 ²⁵
- Second	95%	Flashpoint: 9	95°C (203°F)		
31/2C, CI	(p-TOLYLETHYL)METHYLDICHLOROSILANE $C_{10}H_{14}Cl_2Si$ Mixed o-, m-, p- isomers				
	α:β ~ 40:60				
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protice				
	[718635-97-3]/[63126-87-4] TSCA-L HMIS: 3-1-1-)	X	50g \$88.00		

	name	MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰	
CH ₃ CH CH ₂ CH ₂ CCI	SIM6512.5 (2-METHYL-2-PHENYLETHYL)METHYLDICHLORO- SILANE METHYL(a-METHYLPHENETHYL)DICHLOROSILANE	233.21	104-5 / 9	1.1165	1.5152	
CH³∕2ſ ^{Cl}	$\begin{array}{ccc} C_{10}H_{14}Cl_2Si \\ \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solve} \\ \underline{[13617-28-2]} & \text{TSCA} & \text{EC 237-102-1} & \text{HMIS: 3-1-1-X} \end{array}$	ents	25g \$45.00	100g \$146.00		_
О ОССН ₃ О СН ₃ —Şі—О-ССН ₃	SIM6519.0 METHYLTRIACETOXYSILANE, 95% C ₇ H ₁₂ O ₆ Si	220.25 Flashpoint: 85°C Vapor pressure, 9		1.175	1.4083	COMMERCIAL
OCCII3	Most common cross-linker for condensation cure silicone RTVs HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [4253-34-3] TSCA EC 224-221-9 HMIS: 3-2-1-X		50g \$19.00	2kg \$280.00	18kg \$576.00	CLAL
	SIM6520.0 METHYLTRICHLOROSILANE	149.48	66.4 (-78)	1.275	1.4110	
H ₃ C, Cl Cl Si Cl	CH ₃ Cl ₃ Si Viscosity: 0.46 cSt Vapor pressure, 13.5°: 100 mm Surface tension: 20.3 mN/m Ionization potential: 11.36 eV Coefficient of thermal expansion: 1.3 x 10°3	Flashpoint: -15°C TOXICITY: ihl ra Autoignition temp Critical temperatu Critical pressure: ΔΗναρ: 7.4 kcal/	t, LDLo: 450 ppm/4H berature: 395° ure: 243° 39 atm			COMMERCIAL
	Specific heat: 0.22 cal/g/" HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solve [75-79-6] TSCA EC 200-902-6 HMIS: 3-4-2-X		25g \$12.00 ontainer. zDR-S-019 or zCYL	500g \$28.00 -S-019 required	20kg \$516.00*	
H₃C、,Cl	SIM6520.1 METHYLTRICHLOROSILANE, 99%	149.48	66.4 (-78)	1.275	1.4110	-
Si Cl Cl	CH ₃ Cl ₃ Si In combination with H ₂ forms SiC by CVD. ¹ 1. Josiek, A. et al. <i>Chem. Vap. Dep.</i> 1996 , <i>2</i> , 17.					
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solve [75-79-6] TSCA EC 200-902-6 HMIS: 3-4-2-X SIM6555.0	ents	25g \$36.00	500g \$252.00		_
H ₃ C OC ₂ H ₅	METHYLTRIETHOXYSILANE C ₇ H ₁₈ O ₃ Si Viscosity: 0.6 cSt Vapor pressure, 25°: 6 mm		142 (86°F) rat, LD50: 12,500 mg/kg perature: 225°C (437°F)	0.8948	1.3832	COMMEACIAL
2430 0044	Low cost hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	Dipole moment:	1.72 debye			VCTAT
	[2031-67-6] TSCA EC 217-983-9 HMIS: 1-3-1-X SIM6560.0	420.00	25g \$10.00	2kg \$100.00	15kg \$360.00	
CH ₃ OCH ₃ OCH ₃	METHYLTRIMETHOXYSILANE $C_4H_{12}O_3Si$ Viscosity: 0.50 cSt Dipole moment: 1.60 debye	136.22 Flashpoint: 8°C (4 TOXICITY: oral r Autoignition temp ΔHcomb: 1,142 k	rat, LD50: 12,500 mg/kg perature: 255°	0.955	1.3696	COMMERCIAL
	Intermediate for coating resins HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1185-55-3] TSCA EC 214-685-0 HMIS: 3-4-1-X		25g \$10.00	2kg \$64.00	17kg \$323.00	
H ₃ C OCH ₃	SIM6560.1 METHYLTRIMETHOXYSILANE, 99% $C_4H_{12}O_3Si$ Viscosity: 0.50 cSt Dipole moment: 1.60 debye	Autoignition temp	rat, LD50: 12,500 mg/kg perature: 255°	0.955	1.3696	
	Intermediate for coating resins HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1185-55-3] TSCA EC 214-685-0 HMIS: 3-4-1-X	ΔHcomb: 1,142 k		500g \$344.00		
QCH₂CH₂CH₃	[1185-55-3] TSCA EC 214-685-0 HMIS: 3-4-1-X SIM6579.0 METHYLTRI-n-PROPOXYSILANE C ₁₀ H ₂₄ O ₃ Si	220.38 Flashpoint: 60°C	100g \$86.00 83-4 / 13 (140°F)	0.878	1.4085	_
H ₃ C—si—OCH ₂ CH ₂ CH ₃ OCH ₂ CH ₂ CH ₃						
H ₃ C—\$i=OCH ₂ CH ₂ CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [5581-66-8] TSCA EC 226-978-0 HMIS: 2-2-1-X SIM6585.0 METHYLTRIS(METHOXYETHOXY)SILANE	268.38	25g \$54.00	1.045	1.4178	_

	name		MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	
	SIM6590.0 METHYLTRIS(METHYLETHYLKETOXIMO)SILANE, tech-95		301.46	110-1 / 2 (-22)) 0.982	1.4548 ²⁵	
$=N-O_3$ Si-CH ₃	$\label{eq:methyltris} \begin{split} & \textit{METHYLTRIS}(2\text{-BUTANONEOXIME}) \textit{SILANE} \\ & \textit{C}_{13}\textit{H}_{27}\textit{N}_{3}\textit{O}_{3}\textit{Si} \\ & \textit{Neutral cross-linker for condensation cure silicones} \end{split}$		Flashpoint: 90°C (,	,		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture [22984-54-9] TSCA EC 245-366-4 H	/water HMIS: 2-2-1-X		100g \$16.00	2kg \$170.00		
ÇH₂SiCl₃	SIN6596.0		075.04			4.5074	_
	(1-NAPHTHYLMETHYL)TRICHLOROSILANE $C_{11}H_9CI_3Si$		275.64	150-1 / 7	1.3112	1.5974	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture [17998-59-3]	e, water, protic solvents HMIS: 3-2-1-X	S	10g \$116.00			
Si(OCH ₃) ₃	SIN6597.0 1-NAPHTHYLTRIMETHOXYSILANE $C_{13}H_{16}O_{3}Si$		248.35	150 / 2 (33-	5)	1.5562	
	Employed in high refractive index surface modificat HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture						
	•	HMIS: 3-2-1-X		5g \$180.00			_
CH ₃ I ₂ -Si-Cl	SIN6597.3 NONAFLUOROHEXYLDIMETHYLCHLOROSILANE C _a H ₁₀ CIF _a Si		340.69	162-4	1.3422		
CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture	e, water, protic solvents	s	10g \$45.00			
CH;	SIN6597.4						_
-N(CH ₃) ₂	NONAFLUOROHEXYLDIMETHYL(DIMETHYLAMINO)- SILANE $C_{10}H_{16}F_{9}NSi$		349.31 Flashpoint: 42°C (86-8 / 35 108°F)	1.214		
-0,	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture	e, water, protic solvents HMIS: 3-3-1-X	s	10g \$88.00			
CI 	SIN6597.6 NONAFLUOROHEXYLTRICHLOROSILANE		381.53	70-2 / 15	1.542		
H ₂ -Si-Cl	C ₆ H ₄ Cl ₃ F ₉ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture	water pretic solvents		70-27 13	1.042		
Cl		HMIS: 3-2-1-X	.	10g \$27.00	50g \$108.00		
C ₂ H ₅ —OC ₂ H ₅	SIN6597.65 NONAFLUOROHEXYLTRIETHOXYSILANE $C_{12}H_{19}F_9O_3Si$		410.35	96 / 15	1.201	1.3502	
Si—OC ₂ H ₅ OC ₂ H ₅	Critical surface tension, treated surface: 23 mN/m Oleophobic, hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture	e/water					
		HMIS: 2-2-1-X		25g \$56.00	100g \$182.00		
OCH ₃	SIN6597.7 NONAFLUOROHEXYLTRIMETHOXYSILANE		368.27	68-9 / 15	1.335	1.3376	
 Si — OCH3 CCH3	C ₉ H ₁₃ F ₉ O ₃ Si Improves hydrolytic stability of dental composites. ¹ 1. Nikei, S. et al. <i>J. Dent. Res.</i> 2002 , <i>81</i> (7), 482.						
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture [85877-79-8] TSCA-L H	/water HMIS: 3-2-1-X		10g \$32.00	50g \$128.00		
	SIN6598.0						_
ÇH ₃ H₂CH₂CH₂Si −0	p	NE	355.04	181 / 0.75	0.963	1.4925	
CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture	e, water, protic solvents HMIS: 3-1-1-X	s	10g \$95.00			
	SIO6615.0		247.40		00)	4.4400.29	
CH ₃	n-OCTADECYLDIMETHYLCHLOROSILANE DIMETHYL-n-OCTADECYLCHLOROSILANE		347.10 Flashpoint: 201°C	159 / 0.1 (28-3) (394°F)	30) 0.856 ²⁹	1.4498 ²⁹	
-\$i-Cl CH ₃	C ₂₀ H ₄₃ CISi Contains 5-10% C ₁₈ is Employed in bonded HPLC reverse phases. ¹	somers					
	 Wise, S. et al. In Silanes Surfaces & Interfaces; I HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture 			36; p349.			
	[18643-08-8] TSCA EC 242-472-2	HMIS: 3-1-1-X		25g \$25.00	2kg \$412.00		
CH ₃	SIO6615.1 n-OCTADECYLDIMETHYLCHLOROSILANE, 97%		347.10	159 / 0.1 (28-3	30) 0.856 ²⁹	1.4998 ²⁹	
CII ₂ -\$i-CI	DIMETHYL-n-OCTADECYLCHLOROSILANE C ₂₀ H ₄₃ CISi Contains 3-6% C ₁₈ isc	omers	Flashpoint: 201°C	•			
CH3	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture	e, water, protic solvents	s	250 654 00	100a \$165.00		
	[18643-08-8] TSCA EC 242-472-2	HMIS: 3-1-1-X		25g \$51.00	100g \$165.00		_

	name			MW	bp/mm (m	p)	D ₄ ²⁰	n _D ²⁰
	SIO6615.2							
CH ₃	n-OCTADECYLDIMETHYLC 70% in toluene	Contains 5-10%	C inomoro	347.10	159 / 0.1		0.854	
(CH ₂) ₁₆ CH ₂ -Si-Cl	C ₂₀ H ₄₃ CISi	Contains 5-10%	C ₁₈ isomers	Flashpoint: 5	*C (41°F)			
CH ₃	HYDROLYTIC SENSITIVI			ents				
	[18643-08-8] TSCA	EC 242-472-2	HMIS: 3-4-1-X		25g \$21.00	2kg	\$350.00	
ÇH ₃	SIO6617.0			055.70			0.040	4.4540
CH ₂) ₁₆ CH ₂ -Şi-N(CH ₃) ₂	n-OCTADECYLDIMETHYL(I C ₂₂ H ₄₉ NSi	DIME (HYLAMINO)SILA Contains 5-10%		355.72	160 / 0.1		0.818	1.4512
CH ₃	HYDROLYTIC SENSITIVI							
	[76328-77-3] TSCA		HMIS: 3-3-1-X		10g \$42.00	50g	\$168.00	
	SIO6618.0							
CH ₃	n-OCTADECYLDIMETHYLN	METHOXYSILANE		342.68	184-6 / 0.2		0.83 25	1.444
CH ₂) ₁₆ CH ₂ -\$i - OCH ₃	C ₂₁ H ₄₆ OSi	Contains 5-10%	C ₁₈ isomers					
CH ₃	Employed in SAM resis 1. Oh, T. et al. <i>Mol. Cry</i>		nol Sect A 1999 33	R7 7				
	HYDROLYTIC SENSITIVI			01, 1.				
	[71808-65-6] TSCA	EC 276-039-4	HMIS: 2-1-0-X		25g \$52.00	100g	\$169.00	
	SIO6624.0		·					
ÇI	n-OCTADECYLMETHOXYD			383.51	144-7 / 1.5		0.94 25	1.452
CH ₂) ₁₆ CH ₂ -\$i-OCH ₃	C ₁₉ H ₄₀ Cl ₂ OSi	Contains 5-10%		l brown deal				
Ċl	Maintains reactivity of on HYDROLYTIC SENSITIVITIES	•						
	[211934-50-8]	1. 5. Todolo rapidly will IIII	HMIS: 3-1-1-X	omo	25g \$39.00	1000	\$127.00	
	SIO6625.0				<u> </u>			
Çl	n-OCTADECYLMETHYLDIC	HLOROSILANE		367.52		24-6)	0.930	
CH ₂) ₁₆ CH ₂ -Si-CH ₃	C ₁₉ H ₄₀ Cl ₂ Si	Contains 5-10%	C ₁₈ isomers	Flashpoint: 1				
CI	Viscosity: 7 cSt				oral rat, LD50: 200-2,000 emperature: 230°C	mg/kg		
	HYDROLYTIC SENSITIVI	Y: 8: reacts rapidly with mo	pisture, water, protic solv	•	emperature. 250 C			
	[5157-75-5] TSCA	EC 225-931-1	HMIS: 3-1-1-X		25g \$20.00	500g	\$262.00	
QC_2H_5	SIO6627.0							
CH ₂) ₁₆ CH ₂ -Şi-CH ₃	n-OCTADECYLMETHYLDIE			386.73	197 / 2		0.852	1.4407
OC ₂ H ₅	C ₂₃ H ₅₀ O ₂ Si	Contains 5-10%		Flashpoint: >	110°C (>230°F)			
	HYDROLYTIC SENSITIVITIES [67859-75-0] TSCA	Y: 7: reacts slowly with mo EC 267-423-2	HMIS: 2-1-0-X		25g \$38.00			
	SIO6629.0	20 201 120 2	11MIG. 2 1 0 X		209 ψ00.00			
OCH ₃	n-OCTADECYLMETHYLDIN	IETHOXYSILANE		358.68	190/3 (12-18)	0.85	1.4427
$CH_2)_{16}CH_2 - \dot{S}i - CH_3$	$C_{21}H_{46}O_2Si$	Contains 5-10%	C ₁₈ isomers	Flashpoint: >	110°C (>230°F)	,		
OCH ₃				Autoignition t	emperature: 225°C			
	HYDROLYTIC SENSITIVI [70851-50-2] TSCA	'Y: 7: reacts slowly with mo EC 274-936-5	isture/water HMIS: 3-1-0-X		25g \$52.00	1000	\$169.00	
	SIO6640.0	LO 274-930-3	11IVII3. 3-1-0-X		20g \$52.00	1000	\$109.00	
	n-OCTADECYLTRICHLORO	ISII ANE 95%		387.93	160-2 / 3	22)	0.950 22	1.4602
	OTS	Contains 5-10%	C ₁₈ isomers		89°C (372°F)		0.000	002
ÇI	C ₁₈ H ₃₇ Cl ₃ Si							
CH ₂) ₁₆ CH ₂ -Si-Cl	Provides lipophilic surf	•		12				
Čl	Employed in patterning							
	Immobilizes physiologi	,						
	Treated substrates incr 1. Huan, Z. et al. Synth	· ·	of pentacene films.*					
	2. Jeon, J. et al. Langn							
	3. Arkles, B. et al. J. Bi		356.					
	4. Skankar, K. et al. J.	Mater. Res. 2004, 19, 2	003.					
	See also SIO6624.0 HYDROLYTIC SENSITIVI	V: 8: reacts rapidly with m	nieture water protice and	onte				
	[112-04-9] TSCA	EC 203-930-7	HMIS: 3-1-1-X	onto	25g \$11.00	1kc	\$119.00	15kg \$962.00
	SIO6640.1				υ ψ11.00			
Cl	n-OCTADECYLTRICHLORO	SILANE		387.93	160-2 / 3 (2	22)	0.950 22	1.4602
CHOICH SI-CI	C ₁₈ H ₃₇ Cl ₃ Si	Contains <3% C	18 isomers		.002/0 (.	,		
CH ₂) ₁₆ CH ₂ -Si-Cl	Highest concentration							
CI	HYDROLYTIC SENSITIVI			ents	25~ 000.00	400-	\$72.00	
	[112-04-9] TSCA	EC 203-930-7	HMIS: 3-1-1-X		25g \$22.00	100g	\$72.00	
OC H	SIO6642.0 n-OCTADECYLTRIETHOXY	SII ANE 95%		416.76	165.0./2 /	10-12\	0.87	1.4386
OC ₂ H ₅ CH ₂) ₁₆ CH ₂ -Şi - OC ₂ H ₅	$C_{24}H_{52}O_3Si$	Contains 5-10%	C ₁₈ isomers		165-9 / 2 (150°C (>302°F)	10-12)	0.07	1.4500
OC ₂ H ₅	Forms hydrophobic, ole		. 10	aonponic.	5 0 (002 1)			
2115		Y: 7: reacts slowly with mo	isture/water					
	[7399-00-0]	EC 230-995-9	HMIS: 2-1-0-X		25g \$30.00		\$96.00	

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
	SIO6645.0				
	n-OCTADECYLTRIMETHOXYSILANE, 95% $C_{21}H_{46}O_{3}Si \hspace{1cm} Contains \hspace{1mm} 5\text{-}10\% \hspace{1mm} C_{18} \hspace{1mm} isomers$	374.68 Flashpoint: 140	170 / 0.1 (13-17)°C (284°F) al rat, LD50: >5,000 mg/kg) 0.885	1.439
OCH ₃ CH ₃ (CH ₂) ₁₆ CH ₂ -Si-OCH ₃	Forms hydrophobic, oleophilic coatings Forms clear, ordered films w/ tetramethoxysilane.1	TOXIOTT: OID	ii rat, 2500 0,000 mg/kg		
OCH ₃	Undergoes oscillatory adsorption to form SAMs. ² 1. Shimjima, A. et al. <i>J. Am. Chem. Soc.</i> 1998 , <i>120</i> , 4528.				
	Thomsen, L. et al. <i>Surf. & Interface Analysis</i> 2005 , 37, 472. See also \$IS6952.0				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[3069-42-9] TSCA EC 221-339-2 HMIS: 2-1-1-X		25g \$15.00	2kg \$520.00	
	SIO6698.0 OCTAMETHYLCYCLOTETRASILAZANE	292.68	225 (97)	0.950 22	1.458 ²⁵
H-N SI CH2	OCTAMETHYLSILANETETRAMINE	Flashpoint: 66°	C (151°F)	0.950	1.430
CH.	C ₈ H ₂₈ N ₄ Si ₄	ΔHform: 188 k	cal/mole		
SI H SI N H	Forms α-Si ₅ N ₄ by ammonia thermal synthesis. ¹ 1. Schaible, S. et al. <i>Applied Organomet. Chem.</i> 1993, 7, 53.				
cha cha	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water		05	400 044700	
	[1020-84-4] TSCA EC 213-817-4 HMIS: 2-2-1-X SIO6710.5		25g \$36.00	100g \$117.00	
H₃C, CH₃ CH	n-OCTYLDIISOPROPYLCHLOROSILANE C14H31CISi	262.94 Flashpoint: >11	95-9 / 0.5 0°C (>230°F)	0.875	1.4550
CH ₃ (CH ₂) ₆ CH ₂ −\$i −Cl CH	Reagent for preparation of HPLC stationary phases w/ high stability 1. Kirkland, J. et al. <i>J. Chromatogr. Sci.</i> 1994 , 32, 473.		(· ,		
H ₃ C CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[117559-37-2] HMIS: 3-1-1-X		10g \$64.00		
H ₃ C CH ₃	SIO6710.7 n-OCTYLDIISOPROPYL(DIMETHYLAMINO)SILANE	271.57	105 / 0.7	0.833	1.4560
CH ₃ (CH ₂) ₆ CH ₂ -\$i-N(CH ₃) ₂	C ₁₆ H ₃₇ NSi	2	100 / 0.1	0.000	
н₃с сн ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [151613-25-1] TSCA HMIS: 3-2-1-X		25g \$250.00		
	SIO6711.0		209 ψ200.00		
CH ₃	n-OCTYLDIMETHYLCHLOROSILANE	206.83	222-5	0.873	1.4328 25
CH ₃ (CH ₂) ₆ CH ₂ -Si - Cl CH ₃	C ₁₀ H ₂₃ CISi HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solve	Flashpoint: 97° ents	C (207°F)		
C113	[18162-84-0] TSCA EC 242-044-5 HMIS: 3-1-1-X		25g \$30.00	100g \$98.00	
CH ₃	SIO6711.1	000.40	004.000	0.040	4.4000
I ₃ (CH ₂) ₆ CH ₂ -Si-OCH ₃	n-OCTYLDIMETHYLMETHOXYSILANE C ₁₁ H ₂₆ OSi	202.42 Flashpoint: 82°	221-223 C (180°F)	0.813	1.4230
CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	·	05 44.44		
	[93804-29-6] EC 298-404-7 HMIS: 3-2-1-X SIO6711.3		25g \$84.00		
CH ₃	n-OCTYLDIMETHYL(DIMETHYLAMINO)SILANE	215.45	94-6 / 10	0.80 25	1.4347
I ₃ (CH ₂) ₆ CH ₂ -\$i-N(CH ₃) ₂ CH ₃	C ₁₂ H ₂₉ NSi	Flashpoint: 69°			
CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [110348-62-4] HMIS: 3-2-1-X		25g \$56.00		
	SIO6712.0		.0 400.00		
CH ₃ (CH ₂) ₆ CH ₂ , CI	n-OCTYLMETHYLDICHLOROSILANE	227.25	94 / 6	0.9761	1.4440
H ₃ C CI	C ₉ H ₂₀ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solve	Flashpoint: 98° ents	C (208°F)		
	[14799-93-0] TSCA EC 238-863-2 HMIS: 3-2-1-X		25g \$20.00	500g \$174.00	
TH (CH.) CH	SIO6712.2	040.47	00.5 1.5	0.0470	4.4400
CH ₃ (CH ₂) ₆ CH ₂ , OC ₂ H ₅	n-OCTYLMETHYLDIETHOXYSILANE C ₁₃ H ₃₀ O ₂ Si	246.47 Flashpoint: >11	80-2 / 2 0°C (>230°F)	0.8478	1.4190
H ₃ C OC ₂ H ₅	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	p = 0.00 11		400 000 00	
	[2652-38-2] HMIS: 2-1-0-X		25g \$21.00	100g \$69.00	
OCH ₃	SIO6712.4 n-OCTYLMETHYLDIMETHOXYSILANE	218.42	87-9 / 5	0.858	1.4190
I ₃ (CH ₂) ₆ CH ₂ -Si-CH ₃	$C_{11}H_{26}O_2Si$	Flashpoint: 94°			
OCH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [85712-15-8] EC 288-374-3 HMIS: 3-2-1-X		25g \$30.00	100g \$98.00	
	SIO6713.0		209 ψου.00	.509 400.00	
ÇI	n-OCTYLTRICHLOROSILANE	247.67	224-6 (<-50)	1.0744	1.4490
CH ₃ (CH ₂) ₆ CH ₂ -Si - CI	C ₈ H ₁₇ Cl ₃ Si Vapor pressure, 125°: 1 mm	Flashpoint: 96°	C (205°F)		
Cl	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solve	ents			
	[5283-66-9] TSCA EC 226-112-1 HMIS: 3-1-1-X		25g \$11.00	2kg \$170.00	

	name		MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
OC ₂ H ₅ ₃ (CH ₂) ₆ CH ₂ -\$i = OC ₂ H ₅	SIO6715.0 n-OCTYLTRIETHOXYSILANE C ₁₄ H ₃₂ O ₃ Si Viscosity: 1.9 cSt		276.48 Flashpoint: 109°0 TOXICITY: oral i	98-9 / 2 (<-40) C (228°F) rat, LD50: >5,110 mg/kg	0.8750	1.4160
OC ₂ H ₅	Widely used in architectural hydrophobation May be formulated to stable water emulsions. 1. Depasquale, R. et al. US Patent 4,648,904, 1 HYDROLYTIC SENSITIVITY: 7: reacts slowly with moit	sture/water				
	[2943-75-1] TSCA EC 220-941-2	HMIS: 2-1-0-X		50g \$10.00	2kg \$140.00	15kg \$585.00
$H_{s} = \begin{pmatrix} CH_{3} \\ CCH_{2})_{\delta_{1}} \\ CH_{2} \\ O-S_{1} \\ OC_{2}H_{3}/n \end{pmatrix} OC_{2}H_{5}$	SIO6715.2 OCTYLTRIETHOXYSILANE, oligomeric hydrolysate Viscosity: 400-600 cSt Reactive hydrophobic surface treatment with re HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist		lucts	100g \$48.00	0.979	
	SIO6715.5			νευς φισ.σσ		
OCH ₃ CH ₂) ₆ CH ₂ -Si = OCH ₃ OCH ₃	n-OCTYLTRIMETHOXYSILANE C ₁₁ H ₂₂ O ₃ Si Vapor pressure, 75°: 0.1 mm Treatment for particles used in non-aqueous liq	uid dispersions	234.41 Flashpoint: 68°C Viscosity: 1 cSt	191-2 (154°F)	0.907	1.417
3 7773	See also SII6458.0 ISOCTYLTRIMETHOXYSIL HYDROLYTIC SENSITIVITY: 7: reacts slowly with mois [3069-40-7] TSCA EC 221-338-7	ANE		25g \$10.00	2kg \$190.00	
	SIP6716.0					
(CH ₂) _{[1} Si(OCH ₃) ₃	PENTAFLUOROPHENOXYUNDECYLTRIMETHOXY SILANE $C_{20}H_{31}F_{5}O_{4}Si$	/-	458.54			
	For non-covalent immobilization of proteins HYDROLYTIC SENSITIVITY: 7: reacts slowly with mois [944721-47-5]	sture/water HMIS: 3-2-1-X		5g \$240.00		
H ₂ CH ₂ CH ₂ SiCl ₃	SIP6716.4 PENTAFLUOROPHENYLPROPYLTRICHLOROSILA $C_9H_9Cl_3F_5Si$	NE	343.58	99 / 0.75 (27-30	1.495	1.4620
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moi [78900-02-4]	sture, water, protic solver HMIS: 3-1-1-X	ats	2.5g \$64.00		
ġĊĦġĊĦġSĬ(ŎĊĦġ)	SIP6716.6 PENTAFLUOROPHENYLPROPYLTRIMETHOXYSIL C ₁₂ H ₁₅ F ₅ O ₃ Si	ANE	330.33	97 / 0.75	1.27	
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with mois [303191-26-6] SIP6717.0	sture/water HMIS: 2-1-1-X		2.5g \$76.00		
H ₃ CH ₃ -O-Si-CH ₃ H ₃ CH ₃	1,1,1,3,3-PENTAMETHYL-3-ACETOXYDISILOXANE C ₇ H ₁₈ O ₃ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with mois		206.39 Flashpoint: 40°C	149-50 (104°F)	0.90	1.3887 25
W. S. C.	[70693-47-9] TSCA EC 274-767-7	HMIS: 2-2-1-X		10g \$36.00	50g \$144.00	
	SIP6720.0 PENTYLTRICHLOROSILANE AMYLTRICHLOROSILANE		209.59 Flashpoint: 30°C	171-2 (86°F)	1.142	1.4456
-Si-Cl	C ₉ H ₁₁ Cl ₉ Si Mixed isomers See also SII6453.5 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moi	sture, water, protic solver	Specific heat: 0.3 Viscosity: 1.1 cSt	35 cal/g/°		
	[107-72-2] TSCA EC 203-515-0 SIP6720.2	HMIS: 3-3-1-X		25g \$52.00		
OC ₂ H ₅ -Si-OC ₂ H ₅ OC ₂ H ₅	PENTYLTRIETHOXYSILANE AMYLTRIETHOXYSILANE C ₁₁ H ₂₂ O ₃ Si Mixed isomers		234.41 Flashpoint: 68°C	95-6 / 1.3 (154°F)	0.895	1.4059
OC ₂ H ₅	Viscosity: 2.1 cSt HYDROLYTIC SENSITIVITY: 7: reacts slowly with mois [2761-24-2] TSCA EC 220-429-9	sture/water HMIS: 2-2-1-X		25g \$58.00		
	<u>, </u>					
ОС ₂ Н ₅ оСН ₂ СН ₂ — Şi — ОС ₂ Н ₅ ОС ₂ Н ₅	SIP6720.5 PERFLUORODDECYL-1H,1H,2H,2H-TRIETHOXY SILANE - PERFLUOROTETRADECYL-1H,1H,2H,2H Contains ~ 5% SIH5841.2, balance higher hom For the preparation of low surface energy subst See also SIH5840.25 HYDROLYTIC SENSITIVITY: 7: reacts slowly with mois	I-TRIETHOXYSILANE ologs rates	710-810 E MIXTURE, 80%	157-198 / 1.5 (70-88	5)	

	name			MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
QC ₂ H ₅	C ₂₀ H ₁₉ F ₁₇ O ₃ Si	L)PHENYLTRIETHOXY	SILANE	658.50 Flashpoint: >	101-3 / 1 110°C (>230°F)	1.448	
—Şi−OC ₂ H ₅ OC ₂ H ₈	1. Kondo, Y. <i>J.</i>	e to >300° eated glass surface, wa Oleoscience, 2004 , 53, NSITIVITY: 7: reacts slowly	143		1 00 \$222 00		
	SIP6720.72	DDODYI ENEOVY)IME		4 000 9 000	1.0g \$232.00	1.5	
OCH ₃ CH ₂ Si – OC	PROPYLTRIMETHOX _{H₃} Contact angle, v		inated hydrocarbon	4,000-8,000		1.5	
OCH ₃		SENSTITVITY: 7: reacts : TSCA	slowly with moisture/water HMIS: 2-0-1-X		10g \$180.00		
_	SIP6720.8				- G		
	C ₁₄ H ₂₃ CISi	ROPYLCHLOROSILAN Mixed α-,	3-isomers	254.86	105-9 / 0.3	0.970	
ź		NSITIVITY: 8: reacts rapidly TSCA	with moisture, water, protic solve HMIS: 3-2-1-X	ents	5g \$120.00		
_	SIP6721.0						
	PHENETHYLDIMETH C ₁₀ H ₁₅ CISi See also SIP672		α-, β-isomers	198.77 Flashpoint: 7	56 / 0.2 0°C (158°F)	0.999	1.5185
C)	HYDROLYTIC SE		with moisture, water, protic solve 07-8 HMIS: 3-2-1-X	ents	50g \$170.00		
_	SIP6721.2				1-9 \$170.00		
	C ₁₂ H ₂₁ NSi		0-15% α-isomer	207.39	109 / 2	0.890	1.4946
_		NSITIVITY: 7: reacts slowly TSCA	HMIS: 3-2-1-X		10g \$117.00		
	SIP6721.5	I DICLII ODOGII ANE		240.40	00.10	4 407	1 5100
	PHENETHYLMETHY METHYL(PHENETHYL) C9H12Cl2Si		α-, β-isomers	219.19 Flashpoint: 8	99 / 6 0°C (176°F)	1.127	1.5120
-	[772-65-6]	NSITIVITY: 8: reacts rapidly TSCA EC 212-25	with moisture, water, protic solve 53-6 HMIS: 3-2-1-X	ents	25g \$38.00	100g \$124.00	
	SIP6722.0 PHENETHYLTRICHL	.OROSILANE		239.60	93-6 / 3	1.240	1.5185
	C ₈ H ₉ Cl ₃ Si		α-, β-isomers	Flashpoint: 9			
		NSITIVITY: 8: reacts rapidly	with moisture, water, protic solv 71-0 HMIS: 3-2-1-X		25g \$25.00	100g \$82.00	
	SIP6722.6 PHENETHYLTRIMET			226.35	95-6 / 2	1.037	1.4753
	C ₁₁ H ₁₈ O ₃ Si Component in o In combination v	Contains optical coating resins with TEOS forms hybrid	ı-, β-isomers silicalite-1 molecular sieves.	Flashpoint: 1			
I ₃	HYDROLYTIC SE	al. Adv. Mater. Res. 2008 NSITIVITY: 7: reacts slowly TSCA EC 256-36	with moisture/water		25g \$42.00	100g \$136.00	2ka \$420.00
-	[49539-88-0] SIP6723.0	100A E0 200-30	1 IIVIIG. 3-1-1-A		20y 942.00	100g \$136.00	2kg \$420.00
CI	C ₁₄ H ₁₅ CIOSi		other isomers	262.81	102-6 / 1	1.11 25	1.5603 25
CH ₃	1. Gardos, M. A	ow-temperature lubrical SLE Transactions 1972	•	onte			
_	[41318-68-7]	vorrivirir. o. reacis rapidly	HMIS: 3-2-1-X	onto	5g \$94.00		
H ₃	SIP6723.2 3-PHENOXYPROPYI C ₁₁ H ₁₇ CIOSi	LDIMETHYLCHLOROS	ILANE	228.78	90-2 / 0.25	1.034	1.5052
H3	HYDROLYTIC SE	NSITIVITY: 8: reacts rapidly	with moisture, water, protic solve	ents	25a 645 00	100g \$146.00	
-	[69733-73-9] SIP6723.25		HMIS: 3-2-1-X		25g \$45.00	100g \$146.00	
	C ₁₀ H ₁₄ Cl ₂ OSi	LMETHYLDICHLOROS		249.21	110 / 1	1.158	1.5150
-	[28229-56-3]	NSITIVITY: 8: reacts rapidly	with moisture, water, protic solve HMIS: 3-2-1-X	ents	25g \$84.00		
1	SIP6723.3 3-PHENOXYPROPYI C ₉ H ₁₁ CI ₃ OSi	LTRICHLOROSILANE		269.63 Flashpoint: >	40 / 0.02 110°C (>230°F)	1.2574	1.5190
1	HYDROLYTIC SEI	NSITIVITY: 8: reacts rapidly	with moisture, water, protic solv			400 6447.05	
	[60333-76-8]		HMIS: 3-1-1-X		25g \$36.00	100g \$117.00	

PRINTING	nam	ne		MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
PHENOXYNDECTIFICHLOROSILANE 381.85 1867/0.3 1.089	SIP67						
Columbia	346			381.85	166-7 / 0.3	1.089 25	
MORDOUTIC SENSITIVEY & reach repolly with monature, waiter, profice solvents	and the same of th						
CH CH CH CH CH CH CH CH		·					
Section Sect				3	F~ 0040.00		
## PHENYLBUTYLDMETHYLCHLOROSILANE 228.33 85.7 / 1.05 1.094 2.00		·	UINIO: 9-1-1-V		5g \$210.00		
C(1)	CH.			000.00		0.004.25	4 4070 25
HOROCYTIC SENSITIVITY & reacts rapidly with moisturs, water, profits relations 1.00 1.0	4-PNE					0.964	1.4979 ²⁵
Signature Sign	0121 1190		ure, water, protic solvents		10 C (>230 T)		
### APPENYLBUTYMENTMOCHLOROSILANE APPENYLBUTYMENTMOCHLOROSILANE 247.24 105.91.15 1.09 25					25g \$110.00		
CCH3,4S1-CLI, CC	SIP67	724.8					
CH13_N=C11_1 CH13_	Cl 4-PHE	NYLBUTYLMETHYLDICHLOROSILANE		247.24	105-9 / 1.5	1.09 25	
				Flashpoint: >1	10°C (>230°F)		
SIPS724.9 4. HENYL BUTYLTRICHLOROSILANE CITY SIRSTTYTY 8. reacts rapidly with moisture water, profit solvents Flashpoint: >110°C (>230°F) Flashpoint: 71°C (762°F) Flashpoint: 71°	Cl H	IYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisti		3			
CH ₂ CSI CC			HMIS: 3-1-1-X		25g \$110.00		
CCH3_0_Si							
Employed as bonded phase in HPLC separation of aromatics HYDROLYTIC SENSITIVITY 8: reachs rapidly with moisture, water, pote solvents (1788-88-3) TSCA-L HMIS: 3-1-1-X 25g \$92.00 100g \$299.00 SIP6726.0 PHENYLDIMETHYLACETOXYSILANE (24,0)Si Flashpoint: 72°C (162°F) Flashpoint: 61°C (142°F) Flashpoi						1.192	1.512
17388-88-3 TSCAL HMIS: 3-1-1-X 25g \$92.00 100g \$299.00	fillion F		of aromatics	Flashpoint: >1	10°C (>230°F)		
	CI			3			
PHENYLDIMETHYLCRETOXYSILANE CH ₃ PHENYLDIMETHYLCRETOXYSILANE CH ₃ PHENYLDIMETHYLCRETOXYSILANE (H ₃ O ₅) PHENYLDIMETHYLDICHLOROSILANE (H ₃ O ₅) PHENYLDICHTOX ENSITIVITY: r. reacts rapidly with moisture-water, protic solvents (H ₃ O ₅) PHENYLDICHTOX ENSITIVITY: 8. reacts rapidly with moisture, water, protic solvents (H ₃ O ₅) PHENYLDIMETHYLDIS(DIMETHYLAMINO)SILANE (H ₃ O ₅) PHENYLDIMETHYLBIS(DIMETHYLAMINO)SILANE (H ₃ O ₅) PHENYLDIMETHYLERIS(DIMETHYLAMINO)SILANE (H ₃ O ₅) PHENYLDIMETHYLERIS(DIMETHYLAMINO)SILANE (H ₃ O ₅) PHENYLDIMETHYLERICOX ENSITIVITY: 8. reacts rapidly with moisture, water, protic solvents (H ₃ O ₅) PHENYLDIMETHYLDIMETHYLAMINO)SILANE (H ₃ O ₅) PHE					25g \$92.00	100g \$299.00	
12/-9/4 1.006 1	SIP67	726.0					
CH3	II PHEN	YLDIMETHYLACETOXYSILANE		194.30	127-9 / 44	1.006	1.4907
17887-60-4 TSCA	U ₁₀ I I ₁₄ C	· =		Flashpoint: 72	°C (162°F)		
SIP6728.0 PHENYLDIMETHYLCHLOROSILANE CH ₁ CISI Flashpoint: 61°C (142°F) Abrop ressure, 25°: 1 mm Forms cuprate. 1. Fleming, I. and Terrett, N. K. <i>Tetrahedron Lett.</i> 1984, 25, 5103. FSE: Vol. 7, p. 133; Vol. 8, p. 196; Vol. 11, p. 209; Vol. 12, p. 210. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [768-33-2] TSCA EC 217-39-0 HMIS: 3-2-1-X 25g \$26.00 100g \$84.00 SIP6728.4 PHENYLDIMETHYLETHOXYSILANE Flashpoint: 61°C (142°F) Viscosity: 1.3 cSt Viscosit					05 +		
PHENYLDIMETHYLCHLOROSILANE		. 00 1	HMIS: 2-2-1-X		25g \$74.00		
C ₀ H _n ClSi Viscosity: 1.4 cS1 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.4 cS1 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.4 cS1 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.4 cS1 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1 mpit mal syndrome. Hydrocytric sensitivity: 7: reacts slowly with moisture/water (1825-68-7) ToXicity: oral rat, LD50: 2,460 mg/kg Viscosity: 1.5 cS2 Vapor pressure, 25°: 1 mm Forms cuprate. Viscosity: 1 mpit mal syndrome. Hydrocytric sensitivity: 7: reacts slowly with moisture/water (1825-68-7) ToXicity: oral rat, LD50: 2,460 mg/kg Viscosity: 1 mm Forms cuprate. Viscosity				470.74		4.000	4 5000
Viscosity: 1.4 cSl						1.032	1.5082
Vapor pressure, 25': 1 mm Forms cuprate. 1. Fleming, 1. and Terrett, N. K. Tetrahedron Lett. 1984, 25, 5103. F&F: Vol. 7, p 133: Vol. 8, p 196; Vol. 11, p 209; Vol. 12, p 210. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [768-33-2] TSCA	CHARLE						
CH ₃ Forms cuprate.* 1. Fleming, I. and Terrett, N. K. <i>Tetrahedron Lett.</i> 1984, 25, 5103. FAF: Vol. 7, p 133; Vol. 8, p 196; Vol. 11, p 209; Vol. 12, p 210. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [788-33-2] TSCA EC 212-193-0 HMIS: 3-2-1-X 25g \$26.00 100g \$84.00 SIP6728.4 PHENYLDIMETHYLETHOXYSILANE Cultury: Children Companies of C	1	•					
1.	CH. F	orms cuprate.1					
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [768-33-2] TSCA EC 212-193-0 HMIS: 3-2-1-X 25g \$26.00 100g \$84.00 SIP6728.4 PHENYLDIMETHYLETHOXYSILANE 180.32 93 / 25 0.926 C _w H _w ,OSi Flashpoint: 61°C (142°F) Viscosity; 1.3 cSl TOXICITY: oral rat, LD50: 2,460 mg/kg Dipole moment: 1.34 Antiepileptic activity in petit mal syndrome HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1825-58-7] TSCA EC 217-366-4 HMIS: 2-2-1-X 10g \$24.00 50g \$96.00 SIP6729.5 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 339.03 172-4 / 0.25 0.921 C _w H _w ,CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE 205.16 225-6 1.184 C _y H _w ,C _y Si Vapor pressure, 100°: 13 mm ΔHVasi 11.9 kcal/mole HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144 C _w H _w ,C _y Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 1128-33-31 HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 295.71 95 / 0.1 1.144 C _w H _w ,C _y Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur	1						
Table 3-2- TSCA EC 212-193-0 HMIS: 3-2-1-X 25g \$26.00 100g \$84.00							
SIP6728.4 PHENYLDIMETHYLETHOXYSILANE C ₁₀ H ₁₄ OSi C ₁₀ H ₁₄ OSi C ₁₀ H ₁₄ OSi Viscosity: 1.3 cSt Dipole moment: 1.34 Antiepileptic activity in petit mal syndrome HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1825-58-7] TSCA EC 217-366-4 HMIS: 2-2-1-X 10g \$24.00 50g \$96.00 SIP6729.5 SIP6730.0 PHENYLETHYLDICHLOROSILANE C ₂₀ H ₂₆ CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE C ₂₀ H ₂₆ CISi Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144 C ₁₂ H ₁₇ C ₁ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 295.71 Plashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 206.38 108-9 / 11 Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00				3	25a \$26.00	100g \$84.00	2kg \$700.00
PHENYLDIMETHYLETHOXYSILANE C1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			TIMIO. O Z T X		209 φ20.00	100g ψ0+.00	2κg ψ/ 00.00
C ₁₀ H ₁₀ OSI CH ₃ Si = OC ₂ H ₅ CH ₃ C	DUENI			180 32	03 / 25	0.926	1.4799
Viscosity: 1.3 cSt Dipole moment: 1.34 Antiepileptic activity in petit mal syndrome HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1825-58-7] TSCA EC 217-366-4 HMIS: 2-2-1-X SIP6729.5 12-PHENYLDODECYLDIMETHYLCHLOROSILANE SIP6730.0 PHENYLETHYLDICHLOROSILANE C-2H _{3C} CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE C-2H _{3C} CISi Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE C _{12t} H ₁₇ C ₁ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLHEXYLTRICHLOROSILANE C ₁₁ H ₂ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLHETHYLBIS(DIMETHYLAMINO)SILANE C ₁₁ H ₂ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	C ₄₀ H ₄₀ C					0.320	1.4700
Antiepileptic activity in petit mal syndrome HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1825-58-7] TSCA EC 217-366-4 HMIS: 2-2-1-X 10g \$24.00 50g \$96.00 SIP6729.5 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 339.03 172-4 / 0.25 0.921 C ₂₀ H ₃₂ CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE 205.16 225-6 1.184 C ₄ H ₁₀ CI ₂ Si Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144 C ₁₂ H ₁₇ CI ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 C ₁₁ H ₂₂ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F)	-00 H						
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1825-58-7] TSCA EC 217-366-4 HMIS: 2-2-1-X 10g \$24.00 50g \$96.00 SIP6729.5 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 339.03 172-4 / 0.25 0.921 C ₂₀ H ₃₆ CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE 205.16 225-6 1.184 C ₂₀ H ₁₆ CLSi Flashpoint: 92°C (198°F) Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144 C ₁ H ₁₇ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 C ₁ H ₃ D ₃ N ₅ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F)	H_3 D	Dipole moment: 1.34					
TSCA EC 217-366-4 HMIS: 2-2-1-X 10g \$24.00 50g \$96.00							
SIP6729.5 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 12-PHENYLDODECYLDIMETHYLCHLOROSILANE 1339.03 172-4 / 0.25 0.921 172-4 / 0.25 0.921 172-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 173-4 / 0.25 0.921 1.184 1.184 1.184 1.184 1.184 1.184 1.184 1.184 1.184 1.184 1.184 1.184 1.185-27-5] 1.184					100 004 00	50a \$06 00	
12-PHENYLDODECYLDIMETHYLCHLOROSILANE 12-PHENYLDODECYLDIMETHYLCHLOROSILANE C ₂₀ H ₃₅ CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE C ₂ H ₁₀ Cl ₂ Si Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 295.71 95 / 0.1 1.144 C ₁₂ H ₁₇ Cl ₃ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 C ₁₁ H ₂₀ N ₂ Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents			ΠΙΝΙΙΟ. 2-2-1-Λ		10g \$24.00	50g \$96.00	
C ₂₀ H ₃₀ CISi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X SIP6730.0 PHENYLETHYLDICHLOROSILANE C ₂ H ₁₀ Cl ₂ Si Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE C ₁₂ H ₁₇ Cl ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE C ₁₁ H ₂₀ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE C ₁₁ H ₂₀ N ₂ Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	7.11-			220.02	470 4 / 0 05	0.021	1.487
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X 5g \$318.00 SIP6730.0 PHENYLETHYLDICHLOROSILANE C ₈ H ₁₀ Cl ₂ Si Vapor pressure, 100°: 13 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 295,71 95 / 0.1 1.144 C ₁₂ H ₁₇ Cl ₃ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 C ₁₁ H ₂₀ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents				338.03	172-4 / 0.25	0.921	1.407
HMIS: 3-2-1-X 5g \$318.00	(31)		ıre/water				
PHENYLETHYLDICHLOROSILANE Columbda Co		,			5g \$318.00		
$ \begin{array}{c} C_{2}H_{10}Cl_{2}Si & Flashpoint: 92^{\circ}C \ (198^{\circ}F) \\ Vapor pressure, 100^{\circ}: 13 \ mm & \Delta Hvap: 11.9 \ kcal/mole \\ HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents \\ \hline [1125-27-5] & TSCA & EC 214-407-8 & HMIS: 3-2-1-X & 25g \$124.00 \\ \hline SIP6736.4 & 6-PHENYLHEXYLTRICHLOROSILANE & 295.71 & 95 / 0.1 & 1.144 \\ \hline C_{12}H_{17}Cl_{3}Si & HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents \\ \hline [18035-33-1] & HMIS: 3-1-1-X & 5g \$94.00 \\ \hline SIP6736.8 & PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE & 208.38 & 108-9 / 11 \\ \hline C_{11}H_{20}N_{2}Si & Flashpoint: 78^{\circ}C \ (172^{\circ}F) \\ \hline HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents \\ \hline Flashpoint: 78^{\circ}C \ (172^{\circ}F) \\ \hline HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents \\ \hline Flashpoint: 78^{\circ}C \ (172^{\circ}F) \\ \hline HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents \\ \hline \end{tabular}$	SIP67	730.0					
Vapor pressure, 100°: 13 mm ΔHvap: 11.9 kcal/mole HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144 C ₁₂ H ₁₇ Cl ₃ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 C ₁₁ H ₂₀ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	PHEN	YLETHYLDICHLOROSILANE		205.16	225-6	1.184	1.5321
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents 1125-27-5 TSCA	201				, ,		
[1125-27-5] TSCA EC 214-407-8 HMIS: 3-2-1-X 25g \$124.00 SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144 C12H17/Cl3Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE 208.38 108-9 / 11 C11H20N2Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	1	• •			ccal/mole		
SIP6736.4 6-PHENYLHEXYLTRICHLOROSILANE 295.71 95 / 0.1 1.144	Col			3	25a \$124 00		
6-PHENYLHEXYLTRICHLOROSILANE C ₁₂ H ₁₇ Cl ₃ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE C ₁₁ H ₂₀ N ₂ Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents		*	1 IIVIIO. 3-2-1-A		20g \$124.00		
C12H17Cl3Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE C11H20N2Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	f -			295 71	95 / 0 1	1 1//	1.5065
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents [18035-33-1]	16-SI-CI			200.11	30 / U. I	1.144	1.0000
[18035-33-1] HMIS: 3-1-1-X 5g \$94.00 SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE C ₁₁ H ₂₀ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	All and a second		ure, water, protic solvents	3			
SIP6736.8 PHENYLMETHYLBIS(DIMETHYLAMINO)SILANE C ₁₁ H ₂₀ N ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents					5g \$94.00		
N(CH ₃) ₂ C ₁₁ H ₂₀ N ₂ Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents							
C ₁₁ H ₂₀ N ₂ Si Flashpoint: 78°C (172°F) HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvents	PHEN			208.38	108-9 / 11		1.4982
CH ₃ N(CH ₃) ₂	U ₁₁ П ₂₀ I				°C (172°F)		
	N(CH ₃) ₂			3			
[33567-83-8] HMIS: 3-2-1-X 10g \$38.00	[33567	<u>/-83-8]</u>	HMIS: 3-2-1-X		10g \$38.00		

4	OC ₂ H ₅
C ₂ H ₅ O	OC ₂ H ₅

name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	
SIP6821.0					Т
PHENYLTRIETHOXYSILANE	240.37	112-3 / 10	0.996	1.4718	
C ₁₂ H ₂₀ O ₃ Si	Flashpoint: 96°C		0.000		
Viscosity, 25°: 1.7 cSt		rat, LD50: 2,830 mg/kg			
Vapor pressure, 75°: 1 mm	Autoignition temp				
Dipole moment: 1.85 debye	• .	rmal expansion: 0.9 x 10	3		
Dielectric constant: 4.12	Surface tension:				
Electron donor component of polyolefin polymerization catalyst comple		20 1111/111			
Improves photoresist adhesion to silicon nitride					
Effective treatment for organic-grafted clays.1					
Phenylates allyl benzoates. ²					
1. Canrado, K. et al. <i>Chem. Mater.</i> 2001 , <i>13</i> , 3766.					
2. Correia, R. and DeShong, P. J. Org Chem. 2001, 66, 7159.					
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water					
[780-69-8] TSCA EC 212-305-8 HMIS: 2-1-1-X		100g \$11.00	2kg \$112.00	17kg \$510.00	
SIP6822.0		•			
PHENYLTRIMETHOXYSILANE	198.29	211 (-25)	1.064	1.4734	
$C_9H_{14}O_3Si$	Flashpoint: 86°C	(- /	1.001	1.1101	
Viscosity, 25°: 2.1 cSt		nouse, LD50: 180 mg/kg			
Vapor pressure, 108°: 20 mm	Dielectric consta	nt: 4.44			
Dipole moment: 1.77					
Intermediate for high temperature silicone resins					
Hydrophobic additive to other silanes with excellent thermal stabilty					
Cross couples with aryl halides.1					
Phenylates heteroaromatic carboxamides. ²					
Directly couples w/ 1° alkyl bromides and iodides. ³					
1. Mowery, M. E. and DeShong, P. <i>J. Org. Chem.</i> 1999 , <i>64</i> , 1684.					
2. Lam, P. Y. S. et al. <i>Tetrahedron Lett.</i> 2001 , <i>42</i> , 2427.					
3. Young, JY. and Fu, G. C. <i>J. Am. Chem. Soc.</i> 2003 , <i>125</i> , 5616.					
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water					
2996-92-1] TSCA EC 221-066-9 HMIS: 3-2-1-X		100g \$11.00	2kg \$98.00	18kg \$562.00	
SIP6826.5					_
PHENYLTRIS(METHYLETHYLKETOXIMINO)SILANE	363.53	60-5 / 3	0.995		
C ₁₈ H ₂₉ N ₃ O ₃ Si 95%	Flashpoint: >61°		0.000		
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	r idoripoint o r	0 (* 142 1)			
[34036-80-1] TSCA HMIS: 3-2-1-X		50g \$17.00	250g \$68.00		
SIP6910.0		<u>-</u>			_
n-PROPYLDIMETHYLCHLOROSILANE	136.70	113-4	0.8726	1.4138	
C ₅ H ₁₃ CISi	Flashpoint: 10°C		0.0120		
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent		\·/			
[17477-29-1] TSCA EC 241-492-9 HMIS: 3-4-1-X		25g \$49.00	100g \$159.00		
SIP6911.0		<u> </u>	-		_
n-PROPYLDIMETHYLMETHOXYSILANE	132.28	04.6	0.787	1.3927 25	
IFPROPTEDIMETHTEMETHOXYSILANE $C_6H_{16}OSi$	102.20	94-6	0.707	1.5321	
⊖ ₆ ⊓ ₁₆ OSi HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water					
18182-14-4] HMIS: 3-3-1-X		10g \$82.00			
SIP6912.0		109 ψ02.00			-
	157 11	105	1.007	1 425	
1-PROPYLMETHYLDICHLOROSILANE	157.11 Flackpoint: 27°C	125	1.027	1.425	
C ₄ H ₁₀ Cl ₂ Si Viscosity 20° 0.8 cSt	Flashpoint: 27°C	(01 F)			
Viscosity, 20°: 0.8 cSt HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent	ts				
[4518-94-9] TSCA EC 224-843-0 HMIS: 3-3-1-X	~	25g \$41.00	100g \$134.00		
		-~3 ₫41.00	.509 \$107.00		-
SIP6914.0	140.00	400	0.0000	1 2024	
n-PROPYLMETHYLDIMETHOXYSILANE	148.28	126	0.8689	1.3931	
C ₆ H ₁₆ O ₂ Si HVDPOLYTIC SENSITIVITY: 7: reacts slowly with maisture function					
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water 18173-73-4] HMIS: 3-3-1-X		25g \$86.00			
		209 \$00.UU			_
SIP6915.0	477.50		4.405	4 4000	
A DELIEVE FOR OUT ADDICT AND	177.53	123-4	1.185	1.4290	
	Flashpoint: 35°C				
C₃H ₇ Cl₃Si		mole			
C₃H, Cl₃Si Vapor pressure, 16°: 10 mm	ΔHvap: 8.7 kcal				
HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent		05 640-00	0.51 0040.00		
C ₃ H,Cl ₃ Si Vapor pressure, 16°: 10 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent [141-57-1] TSCA EC 205-489-6 HMIS: 3-3-1-X		25g \$12.00	2.5kg \$210.00		_
C ₃ H ₇ Cl ₃ Si Vapor pressure, 16°: 10 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent [141-57-1] TSCA EC 205-489-6 HMIS: 3-3-1-X SIP6917.0	ts	25g \$12.00	-		
C ₃ H ₇ Cl ₃ Si Vapor pressure, 16°: 10 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent [141-57-1] TSCA EC 205-489-6 HMIS: 3-3-1-X		25g \$12.00 179-80	2.5kg \$210.00 0.8916	1.3956	
C ₃ H ₇ Cl ₃ Si Vapor pressure, 16°: 10 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent [141-57-1] TSCA EC 205-489-6 HMIS: 3-3-1-X SIP6917.0	ts	179-80	-	1.3956	
C ₃ H ₇ Cl ₃ Si Vapor pressure, 16°: 10 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent [141-57-1] TSCA EC 205-489-6 HMIS: 3-3-1-X SIP6917.0 n-PROPYLTRIETHOXYSILANE C ₉ H ₂₂ O ₃ Si Architectural masonry water repellant	206.36	179-80	-	1.3956	
C ₃ H ₇ Cl ₃ Si Vapor pressure, 16°: 10 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic solvent [141-57-1] TSCA EC 205-489-6 HMIS: 3-3-1-X SIP6917.0 n-PROPYLTRIETHOXYSILANE C ₉ H ₂₂ O ₃ Si	206.36	179-80	-	1.3956	

 $\begin{array}{c} \operatorname{OCH_3} \\ \operatorname{CH_3CH_2CH_2} - \operatorname{Si} - \operatorname{CH_3} \\ \operatorname{OCH_3} \end{array}$

 $\begin{array}{c} CH_3 \\ CH_3CH_2CH_2 - Si - OCH_3 \\ \downarrow \\ CH_3 \end{array}$

$$\begin{array}{c} \mathsf{OC}_2\mathsf{H}_5\\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2 - \mathsf{Si} - \mathsf{OC}_2\mathsf{H}_5\\ \mathsf{OC}_2\mathsf{H}_5 \end{array}$$

	name		MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
CH ₃ CH ₂ CH ₂	SIP6917.2 PROPYLTRIETHOXYSILANE, oligomeric hydrolysate Viscosity: 25-40 cSt				1.03	1.4243
C_2H_5 O Si OC_2H_5 OC_2H_5	Reactive hydrophobic surface treatment with redu HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [314270-00-3] TSCA		ucts	100g \$24.00		
OCH ₃ CH ₃ CH ₂ CH ₂ — Si — OCH ₃	SIP6918.0 n-PROPYLTRIMETHOXYSILANE $C_eH_{1e}O_s$ Si		164.27 Flashpoint: 34		0.932 25	1.3880
OCI13	yc of treated surface: 28.5 mN/m Hydrophobic surface treatment HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur		TOXICITY: or	ral rat, LD50: 7,420 mg/kg	01 040000	400000
	[1067-25-0] TSCA EC 213-926-7 SIS6952.0 SILICLAD® OCTADECYL FUNCTIONAL SILANE	HMIS: 3-3-1-X		25g \$11.00	2kg \$102.00 0.88	16kg \$386.00
о— сидсидуу—si—o—	20% in t-AMYL ALCOHOL and DIACETONE ALCOHOL Amber liquid			5°C (77°F) friction of treated glass surfactivity of treated surface: 1.2 x		
	For application information see Performance Prod Reduces blood protein adsorption. ¹	lucts Brochure	γc of treated (glass surface: 31 mN/m		
	Anti-stiction coating for polysilicon. ² 1. Arkles, B. et al. In Silanes Surfaces & Interfaces 2. Almanza-Workman, A. et al. J. Electrochem. So	oc. 2002 , <i>14</i> 9, H6.	ordon & Breach	n: 1986; p 91.		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [39443-39-5] TSCA	re/water HMIS: 2-3-1-X		100g \$20.00	1.5kg \$172.00	15kg \$480.00
OH H.CSI-O'N**	SIS6984.0 SODIUM METHYLSILICONATE, 30% in water CH _s NaO ₃ Si		116.12		1.24	
ОН	Viscosity: 10 cSt. Forms economical water-repellent coatings HYDROLYTIC SENSITIVITY: 0: forms stable aqueous sol	utions	pH: 13.0			
	[16589-43-8] TSCA EC 240-648-3 SIT7093.0	HMIS: 3-0-0-X		500g \$17.00	2kg \$50.00	20kg \$420.00
CI L	TETRADECYLTRICHLOROSILANE		331.83	155-6 / 3	1.00	1.4575
CH ₃ (CH ₂) ₁₃ —Si—Cl Cl	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	re, water, protic solvent HMIS: 3-1-1-X	s	25g \$80.00		
OC_2H_5 OC_2H_5 H_3C $ Si$ $ O$ $ Si$ $ CH_3$	SIT7095.0 1,1,3,3-TETRAETHOXY-1,3-DIMETHYLDISILOXANE, $C_{10}H_{28}O_5Si_2$		282.48 Flashpoint: 58	205 3°C (136°F)	0.953	1.3912
OC ₂ H ₅ OC ₂ H ₅		re/water HMIS: 3-2-1-X		25g \$62.00		
ÇII₃ ÇII₃ C₂H₅O−Şi−O−Şi−OC₂H₅	SIT7534.0 1,1,3,3-TETRAMETHYL-1,3-DIETHOXYDISILOXANE $C_0H_{22}O_3Si_2$		222.43 Flashpoint: 43	161 (-134) 3°C (109°F)	0.8788	1.3880
с́н₃ с́н₃		re/water HMIS: 2-2-0-X		25g \$30.00	100g \$98.00	
Q , Q	SIT7753.0 1,1,3,3-TETRAPHENYLDIMETHYLDISILAZANE $C_{26}H_{27}NSi_2$		409.68 Flashpoint: >1	218-220 / 1.5 (91) 110°C (>230°F)		
H ₁ C—SI—N—SI—CH ₁	Deactivates glass capillary columns by persilylatio 1. Grob, K. et al. <i>High Resol. Chrom.</i> & Col Chrom HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur	n. 1980, 3, 197. re/water		_		
	[7453-26-1] TSCA EC 231-227-5 SIT7906.0	HMIS: 2-1-0-X		5g \$28.00	25g \$112.00	
H ₃ C, CH ₂ CH ₃ CH ₃	THEXYLDIMETHYLCHLOROSILANE t-HEXYLDIMETHYLCHLOROSILANE C _e H ₁₉ CISi		178.78 Flashpoint: 51	55-6 / 10 (14-15 °C (124°F)	5) 0.911	1.4490
CH ₃ CH ₃	F&F: Vol. 13, p 74. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu	re, water, protic solvent	s			
CH. CI	[67373-56-2] SIT7906.6	HMIS: 3-2-1-X		25g \$48.00	100g \$156.00	
H ₂ C CHC—SI-CI	THEXYLTRICHLOROSILANE C ₆ H ₁₃ Cl ₅ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu	re. water. protic solvent	219.61	70-2 / 15		
	[18151-53-6]	HMIS: 3-3-1-X		10g \$110.00		
H ₂ C — Si – CH ₂	SIT8030.0 p-TOLYLDIMETHYLCHLOROSILANE C ₀ H ₁₃ CISi		184.74 Flashpoint: 67	215-7 °C (153°F)	1.007 ²⁵	1.5055
cny	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu [35239-30-6] TSCA EC 252-456-7	re, water, protic solvent HMIS: 3-2-1-X	S	5g \$40.00		
п ₃ с————————————————————————————————————	SIT8035.0 p-TOLYLMETHYLDICHLOROSILANE $C_0H_{10}CI_2Si$		205.16 Flashpoint: 80	161-5 / 7 0°C (176°F)	1.1609	1.5330
CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu [25898-37-7] TSCA	re, water, protic solvent HMIS: 3-2-1-X	S	25g \$124.00		

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
	SIT8040.0				
CI	p-TOLYLTRICHLOROSILANE	225.58	218-20	1.28	1.5224 25
3C Si-Cl	C ₇ H ₇ Cl ₃ Si	Flashpoin	:: 92°C (198°F)		
Cl	yc of treated surface: 34 mN/m HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro	atic solvents			
	[701-35-9] TSCA EC 211-854-0 HMIS: 3-2-1-		25g \$34.00	100g \$110.00	
	SIT8042.0				
	p-TOLYLTRIMETHOXYSILANE	212.32	75-8 / 8	1.033	1.4726 ²⁵
OCH ₃	$C_{10}H_{16}O_3Si$	Flashpoint	:: 94°C (201°F)		
Si-OCH3	yc of treated surface: 34 mN/m Charge control surface treatment for electrostatic copier particle	. 1			
OCH ₃	1. Yamazaki, H. Jpn. Kokai JP 06027719 A2, 1994.	5.			
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[17873-01-7] HMIS: 3-1-1-	X	10g \$38.00	50g \$152.00	
CH ₃	SIT8045.0				
H ₃ (CH ₂) ₂₈ CH ₂ -Şi -Cl	TRIACONTYLDIMETHYLCHLOROSILANE, blend	515.42	(60-82))	
CH ₃	$C_{32}H_{67}CISi$ 80% C_{30} and higher, 20% C_{22} - C_{28} HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro	tic solvents			
2.63	[70851-52-4] TSCA EC 274-938-6 HMIS: 3-1-0-		25g \$52.00	100g \$169.00	
	SIT8048.0				
Çl	TRIACONTYLTRICHLOROSILANE, blend	556.26	(60-82))	
3(CH ₂) ₂₈ CH ₂ -Si -Cl	C ₃₀ H ₆₁ Cl ₃ Si 80% C ₃₀ and higher, 20% C ₂₂ -C ₂₈				
Cl	Employed in bonded phases for HPLC of carotenes See also SIH5917.0 HEXACOSYLTRICHLOROSILANE; SIT81	62 0 13-(TRICHI C	ROSILYI METHYI \HEPTACOSA	NE	
Ci	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro		TOOLETEMETITE JILL 17100071	142	
	[70851-48-8] TSCA EC 274-933-9 HMIS: 3-1-1-	X	25g \$52.00	100g \$169.00	
	SIT8162.0				
	13-(TRICHLOROSILYLMETHYL)HEPTACOSANE, 95%	528.21	215 / 0.01 (20-35)	0.946	
	2-DODECYLHEXADECYLTRICHLOROSILANE C ₂₈ H ₅₇ Cl ₃ Si Contains isomers				
~~~~~	Ozgris/Olgor				
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro				
NL(CH-)	[194242-99-4] TSCA-L HMIS: 3-1-1- SIT8162.4	X	10g \$132.00		
Y.	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95		10g \$132.00 146-152 / 0.2	0.985	
CHCH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1- SIT8162.4	X	•	0.985	
CHCH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE	X 359.88	•	0.985	
CHCH ₂ Si(CI) ₃		X 359.88	146-152 / 0.2	0.985	
CHCH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C13Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro-HMIS: 3-2-1-SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)-	X 359.88 stic solvents X 440.70	146-152 / 0.2 10g \$174.00 189-91	0.985	1.3453
CHCH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C13Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1-SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)-DIMETHYLCHLOROSILANE	X 359.88 stic solvents X 440.70	146-152 / 0.2 10g \$174.00		1.3453
CHCH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C13Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro-HMIS: 3-2-1-SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)-	X 359.88 stic solvents X 440.70	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C ₁₆ H ₃₃ Cl ₃ Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1-SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)-DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE	X 359.88 stic solvents X 440.70 Flashpoint	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C13Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE Employed in column chromatography where low protein retentiv	X 359.88 stic solvents X 440.70 Flashpoint	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂₎₇ CH ₃ (CH ₂ )7	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentiv Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions	X 359.88  atic solvents X  440.70 Flashpoint ty is required.1	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1-SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentiv Employed in solid phase extraction of fluorous phases. 2 Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96.	X 359.88  atic solvents X  440.70 Flashpoint ty is required.1	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentives: Employed in solid phase extraction of fluorous phases. 2 Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714.	X 359.88  atic solvents X  440.70 Flashpoint ty is required.1	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentiv Employed in solid phase extraction of fluorous phases. 2 Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96.	X 359.88  atic solvents X  440.70 Flashpoint ty is required.1	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases. 2 Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro	X 359.88  otic solvents X 440.70 Flashpoint tty is required.¹	146-152 / 0.2 10g \$174.00 189-91 :: 52°C (126°F)	1.473	1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases. 2 Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1-	X 359.88  otic solvents X 440.70 Flashpoint tty is required.¹	146-152 / 0.2 10g \$174.00 189-91		1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1-SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases. 2 Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1-SIT8172.0	X  359.88  stic solvents  X  440.70  Flashpoint  ty is required.  3  stic solvents  X	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)	1.473 50g \$126.00	
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₂ Si(CI) ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)-	X  359.88  otic solvents X  440.70 Flashpoint  tty is required.¹  3  otic solvents X	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90	1.473	1.3453
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₃ (CH ₂ ) ₇ CH ₃ F ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33Cl3Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF13Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE	X  359.88  otic solvents X  440.70 Flashpoint  tty is required.¹  3  otic solvents X	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)	1.473 50g \$126.00	
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₃ (CH ₂ ) ₇ CH ₃ F ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H1₀CIF1₃Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro 102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7clyF1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm	X  359.88  Attic solvents X  440.70 Flashpoint  Atty is required.  3  Attic solvents X  461.12 Flashpoint	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90	1.473 50g \$126.00	
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CH ₃ (CH ₂ ) ₇ CH ₃ F ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF1₃Si Packaged over copper powder Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C₃H₁Cl₂F1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro	359.88  attic solvents  X  440.70 Flashpoint  atty is required.  attic solvents  X  461.12 Flashpoint  attic solvents	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)	1.473 50g \$126.00 1.550 ²⁵	
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF1₃Si Packaged over copper powder Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7Cl₂F1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1-	359.88  attic solvents  X  440.70 Flashpoint  atty is required.  attic solvents  X  461.12 Flashpoint  attic solvents	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90	1.473 50g \$126.00	
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF1₃Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alklyIsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7Cl₂F1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1- SIT8174.0	X  359.88  Attic solvents X  440.70 Flashpoint  Atty is required.  3  Attic solvents X  461.12 Flashpoint  Attic solvents X	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)	1.473 50g \$126.00 1.550 ²⁵ 50g \$164.00	1.3500
CH ₃ (CH ₂ ) ₇ CH ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si – CH ₃ CH ₃ CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF1₃Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7Cl₂F1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1- SIT8174.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)-	X  359.88  Attic solvents X  440.70 Flashpoint  Atty is required.  3  Attic solvents X  461.12 Flashpoint  Attic solvents X  481.55	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)  10g \$41.00	1.473 50g \$126.00 1.550 ²⁵	
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CI  CI  CI  CI  CI  CI	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF1₃Si Packaged over copper powder Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alklyIsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7Cl₂F1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1- SIT8174.0	X  359.88  Attic solvents X  440.70 Flashpoint  Atty is required.  3  Attic solvents X  461.12 Flashpoint  Attic solvents X  481.55	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)	1.473 50g \$126.00 1.550 ²⁵ 50g \$164.00	1.3500
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si - CH ₃ CH ₃ CH ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si - CH ₃ CI CI CI CI CI	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF1₃Si Packaged over copper powder Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7;CIgF1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1- SIT8174.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- TRICHLOROSILANE	X  359.88  Attic solvents X  440.70 Flashpoint  Atty is required.  3  Attic solvents X  461.12 Flashpoint  Attic solvents X  481.55	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)  10g \$41.00	1.473 50g \$126.00 1.550 ²⁵ 50g \$164.00	1.3500
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si = CH ₃ CH ₃	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE C10H10CIF₁₃Si Packaged over copper powder Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C9H7CI₂F1₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1- SIT8174.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- TRICHLOROSILANE C8H4Cl₃F1₃Si Packaged over copper powder Lowers the coefficient of friction of silicon substrates.¹ 1. DePalma, V. et al. Langmuir 1989, 5, 868.	X  359.88  Attic solvents X  440.70 Flashpoint  Atty is required.  3  461.12 Flashpoint  Attic solvents X  481.55 Flashpoint	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)  10g \$41.00	1.473 50g \$126.00 1.550 ²⁵ 50g \$164.00	1.3500
CHCH ₂ Si(CI) ₃ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ (CH ₂ ) ₇ CH ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si - CH ₃ CH ₃ CH ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CH ₂ CH ₂ Si - CH ₃ CI CI CI CI CI	[194242-99-4] TSCA-L HMIS: 3-1-1-SIT8162.4 7-(TRICHLOROSILYLMETHYL)PENTADECANE, tech-95 2-HEXYLDECYLTRICHLOROSILANE C16H33C1₃Si Contains isomers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro HMIS: 3-2-1- SIT8170.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- DIMETHYLCHLOROSILANE PERFLUOROOCTYL-1H,1H,2H,2H-DIMETHYLCHLOROSILANE Employed in column chromatography where low protein retentive Employed in solid phase extraction of fluorous phases.² Modification of layered silicates yields film-forming compositions 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96. 2. Curran, D. J. Org. Chem. 1997, 62, 6714. 3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. For branched fluorinated alkylsilane see SIB1706.0 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [102488-47-1] HMIS: 3-2-1- SIT8172.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- METHYLDICHLOROSILANE C₃H,Cl₅F₁₃Si Packaged over copper powder Vapor pressure, 76°: 12 mm HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, pro [73609-36-6] EC 277-551-0 HMIS: 3-2-1- SIT8174.0 (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)- TRICHLOROSILANE C₃H₄Cl₃F₁₃Si Packaged over copper powder Lowers the coefficient of friction of silicon substrates.¹	X  359.88  otic solvents X  440.70 Flashpoint  tty is required.¹  3  otic solvents X  461.12 Flashpoint  otic solvents X  481.55 Flashpoint  otic solvents	146-152 / 0.2  10g \$174.00  189-91 :: 52°C (126°F)  10g \$31.00  189-90 :: 51°C (124°F)  10g \$41.00	1.473 50g \$126.00 1.550 ²⁵ 50g \$164.00	1.3500

COMMERCIAL

COMMERCIAL

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
	SIT8515.0				
	TRIMETHYLETHOXYSILANE	118.25	75-6 (-83)	0.7573	1.3742
ÇH ₃	ETHOXYTRIMETHYLSILANE	Flashpoint	: -27°C (-17°F)		
C ₂ H ₅ O =Si=CH ₃	C ₅ H ₁₄ OSi	Critical ter	nperature: 233°		
21150 31 0113	Vapor pressure, 25°: 111 mm	ΔHcomb:	970.4 kcal/mole		
CH ₃	Dipole moment: 1.2	ΔHvap: 3	3.5 kcal/mole		
	Anti-structuring additive for silicone rubber				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[1825-62-3] TSCA EC 217-370-6 HMIS: 2-4-	1-X	25g \$10.00	1.5kg \$138.00	14kg \$672.0
	SIT8566.0			· ·	<u>_</u>
	TRIMETHYLMETHOXYSILANE	104.22	57-8	0.7560	1.3678
	C ₄ H ₁₂ OSi			0.7300	1.5076
CH ₃		Fiasripoini	: -11°C (12°F)		
H ₃ O=Si=CH ₃	Dipole moment: 1.18 debye  ΔHcomb: 908 kcal/mole				
CH ₃					
	Undergoes α-lithiation w/ tert-butyllithium.				
	1. Bates, T.F. et al. <i>J. Organometal. Chem.</i> <b>2000</b> , 595, 87.				
	F&F: Vol. 14, p 119.				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	4 V	05 24000	400 000-00	4 51 0405 0
	[1825-61-2] TSCA EC 217-369-0 HMIS: 3-4-	1-λ	25g \$19.00	100g \$62.00	1.5kg \$195.0
	SIT8572.6				
CH ₃ CI	TRIMETHYLSILOXYTRICHLOROSILANE	223.63	128	1.1405	1.4032
C-Si-O-Si-CI	$C_3H_9CI_3OSi_2$	Flashpoin	:: 16°C (61°F)		
CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, p	protic solvents			
	[2750-45-0] HMIS: 3-4-	1-X	25g \$72.00		
OCH CH	SIT8582.7				
OCH ₂ CH ₃	TRIMETHYLSILOXYTRIETHOXYSILANE	252.46	62 / 9	0.897	1.3866 ²⁵
I ₂ O-Si-OSi(CH ₃ ) ₃	$C_9H_{24}O_4Si_2$				
OCH ₂ CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water				
	[17861-35-7] HMIS: 2-2-	1-X	25g \$72.00		
H.C. OH	SIT8712.0				
H ₃ C, CH ₃	TRIS(DIMETHYLAMINO)METHYLSILANE	175.35	55-6 / 17 (-11)	0.850 22	1.432 ²²
CH ₂ —Si-N CH ₃	$C_7H_{21}N_3Si$		: 30°C (86°F)	0.000	1.432
N CH ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	Пазпрош	. 30 0 (80 1 )		
H ₃ C CH ₃	[3768-57-8] TSCA EC 223-199-8 HMIS: 3-3-	1-X	10g \$45.00	50g \$180.00	
		1-7	10g \$45.00	30g ψ100.00	
	SIT8719.5	447.00	05.40.0	0.0050	4 4405
H-C- CH ₃ CH ₂	[TRIS(TRIMETHYLSILOXY)SILYLETHYL]DIMETHYL-	417.32	85 / 0.6	0.9056	1.4135
Si Si	CHLOROSILANE				
13S1 O Si(CH ₃ ) ₃	C ₁₃ H ₃₇ ClO ₃ Si ₅				
VCH V	Forms highly hydrophobic monolayers				
U C-Si-CU	Candidate for self-cleaning surfaces				
H ₃ C-Si-CH ₃	Water contact angle: advancing = receding = 104°.1				
CI	1. McCarthy, T. et al. <i>Langmuir</i> <b>1999</b> , <i>15</i> , 7328.				
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, p				
	[225794-57-0] HMIS: 3-2-	1-X	10g \$84.00		
	SIU9050.0				
(CH ₂ ) ₉ CH ₂ SiCl ₃	UNDECYLTRICHLOROSILANE	289.75	155-60 / 15	1.02	
	$C_{11}H_{23}CI_3Si$	Flashpoin	: 107°C (225°F)		
	Employed in SAMS as a spacer molecule for functionally tippe	d silanes			
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, p	rotic solvents			
	TIT DITOLITIO OLIVOTTIVITI. O. Teacis rapidly with moisture, water, p	notio doivonto			

# **Hydrophobic Dipodal Silanes**

Dipodal Surface Bonding

	name	N	١W	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{_{\scriptscriptstyle 20}}$
ClMe ₂ SiCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SiMe ₂ Cl	$\begin{split} & \text{SIB1030.0} \\ & \text{BIS[2-(CHLORODIMETHYLSILYL)ETHYL]BENZENE} \\ & \text{C}_{14}\text{H}_{24}\text{Cl}_2\text{Si}_2 & \text{Mixed isomers} \\ & \text{Intermediate for silahydrocarbon polymers} \\ & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist} \end{split}$		•	116-7 / 0.2 87°C (369°F)	1.02	
		HMIS: 3-1-1-X		50g \$192.00		
Cl(CH ₃ ) ₂ SiCH ₂ CH ₂ Si(CH ₃ ) ₂ Cl	SIB1042.0  1,2-BIS(CHLORODIMETHYLSILYL)ETHANE TETRAMETHYLDICHLORODISILETHYLENE C.H. C.I. Si		215.27 Flashpoint: 4	198-9 (36-9) 0°C (104°F)		
eneng/2010112011201(e113/201	Reagent for protection of primary amines, including 1. Djuric, S. et al. <i>Tetrahedron Lett.</i> <b>1981,</b> 22, 1787. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist		nts	25g \$22.00	100g \$72.00	
Cl(CH ₃ ) ₂ Si(CH ₂ ) ₆ Si(CH ₃ ) ₂ Cl	$\begin{split} & \text{SIB1046.0} \\ & 1,6\text{-BIS}(\text{CHLORODIMETHYLSILYL})\text{HEXANE}, 95\% \\ & \text{C}_{10}\text{H}_{24}\text{Cl}_2\text{Si}_2 \\ & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist} \end{split}$			113-6 / 3 50°C (302°F)	0.961	1.4538
•		HMIS: 3-1-1-X	11.5	25g \$56.00		
	SIB1048.0  1,8-BIS(CHLORODIMETHYLSILYL)OCTANE, 95%  C ₁₂ H ₂₈ Cl ₂ Si ₂ Intermediate for silahydrocarbon polymers		299.43 Flashpoint: 1	106-7 / 0.4 80°C (356°F)	0.946	1.4540
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist		nts	05 040-00	400 \$400.00	
•	[5089-28-1] EC 225-804-0 SIB1048.2	HMIS: 3-1-1-X		25g \$42.00	100g \$136.00	
CI—Si	1,3-BIS(CHLORODIMETHYLSILYL)PROPANE C ₇ H ₁₈ Cl ₂ Si ₂		229.30	94/19	1.0244	1.4647
CI—Şi CH ₂	Forms cyclic derivatives of polyalkyleneoxides suita 1. Zundel, T. et al. <i>Macromol.</i> <b>1998</b> , 31, 2724.					
CH₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist [2295-06-9]	ture, water, protic solve HMIS: 3-2-1-X	nts	5g \$104.00		
ÇI ÇI CH₃ŞiCH₂CH₂ŞiCH₃ CI CI	SIB1614.0  1,2-BIS(METHYLDICHLOROSILYL)ETHANE  2,2,5,5-TETRACHLORO-2,5-DISILAHEXANE  C ₄ H ₁₀ Cl ₄ Si ₂ Dipodal coupling agent		256.11 Flashpoint: 9	208-210 (31-3) 14°C (201°F)	1.2628	1.4760
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist	ture, water, protic solve HMIS: 3-2-1-X	nts	25g \$31.00	100g \$106.00	
	SIB1615.0 1,2-BIS(METHYLDIETHOXYSILYL)ETHANE $C_{12}H_{30}O_4Si_2$		294.54 Flashpoint: >	80 / 1.5 -65°C (>150°F)	0.92	1.4170
	IT DROLT TIC SENSITIVITY. 1. Teacts slowly with moist	ure/water HMIS: 2-2-1-X		25g \$62.00		
F F CH₃SiCH₂CH₂SiCH₃	SIB1630.0 1,2-BIS(METHYLDIFLUOROSILYL)ETHANE		190.29	114	1.118	
F F	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist	ture, water, protic solve HMIS: 3-3-1-X	nts	10g \$75.00		
	SIB1808.0	TIIVIIO. 0 0 T X		10g \$75.00		
<b>\( \)</b>	1,2-BIS(TRICHLOROSILYL)DECANE $C_{10}H_{20}CI_{\theta}Si_{2}$ Bonded phase for HPLC stable over wide range of		409.16	114 / 1	1.2496	1.4754
SiCl ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moist [620987-03-3] TSCA-L	•	nts	25g \$60.00		
Cl ₃ Si(CH ₂ ) ₁₀ SiCl ₃	SIB1809.0 1,10-BIS(TRICHLOROSILYL)DECANE, tech-95 $C_{10}H_{20}Cl_6Si_2$		409.16	156-9 / 1		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistr [52217-62-6]	ure/water HMIS: 3-2-1-X		10g \$49.00		

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
CF ₂	SIB1811.5  1,8-BIS(TRICHLOROSILYLETHYL)HEXADECAFLUORO- OCTANE  C ₁₀ -H ₈ -Cl ₈ F ₁₆ Si ₉	725.06	142-4 / 0.6 (69-70)		
SiCl ₃			1.0g \$140.00		
Cl Cl Cl—Si(CH ₂ ) ₆ Si—Cl	SIB1812.0 1,6-BIS(TRICHLOROSILYL)HEXANE C ₆ H ₁₂ Cl ₆ Si ₂	353.05 Flashpoint: 7	148-50 / 10 75°C (167°F)	1.327	1.4759
ĊI ĊI	Forms mesoporous sol-gel structures HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic  [13083-94-8] TSCA EC 235-994-7 HMIS: 3-2-1-X	solvents	10g \$41.00	50g \$164.00	
CI CI	SIB1813.0 BIS(TRICHLOROSILYL)METHANE CH ₂ Cl ₆ Si ₂	282.90	183	1.5567	1.4740
ćı ćı	Nucleus for star polymers and dendrimers HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic  [4142-85-2] TSCA-L HMIS: 3-2-1-X	solvents	5g \$40.00	25g \$160.00	
}	SIB1813.7 1,2-BIS(TRICHLOROSILYL)OCTADECANE $C_{18}H_{36}CI_{6}Si_{2}$	520.36	186-9 / 0.2	1.103	
SiCl ₃	Hydrolysis resistant dipodal bonded phase for high acidity aqueous HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic HMIS: 3-1-1-X		10g \$124.00		
ÇI ÇI CI—Şi(CH ₂₎₈ Si—CI	SIB1814.0 1,8-BIS(TRICHLOROSILYL)OCTANE C ₈ H ₁₆ Cl ₉ Si ₂	381.10 Flashpoint: 1	140 / 1 115°C (239°F)	1.22	1.4757
ČI ČI	Forms mesoporous sol-gel structures HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic  [52217-53-5] EC 257-748-8 HMIS: 3-1-1-X	solvents	25g \$36.00	100g \$116.00	
Cl Cl -sich ₂ Ch ₂ Ch ₂ si—Cl	SIB1815.0 1,3-BIS(TRICHLOROSILYL)PROPANE C ₃ H ₆ Cl ₆ Si ₂	310.97	115-7 / 4 (29-30)	1.4394	1.4732
CI CI	Forms mesoporous sol-gel structures HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic  [18171-50-1] HMIS: 3-2-1-X	solvents	10g \$85.00		
Cl ₃ Si(CH ₂ ) ₁₁ O 2	SIB1815.4 BIS(TRICHLOROSILYLUNDECYL) ETHER  C ₂₂ H ₄₄ Cl ₆ OS ₁₂ C ₂₃ H ₄₄ Cl ₆ OS ₁₂ C ₃₄ H ₄₅ Cl ₆ OS ₁₄ C ₃₄ H ₄₅ Cl ₆ OS ₁₄ C ₃₄ H ₄₅ Cl ₆ OS ₁₄ C ₄₅ H ₄₅ Cl ₆ OS ₁₄ C	593.48			
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic HMIS: 3-1-1-X	solvents	5g \$242.00		
H ₅ Q	SIB1816.6 1,4-BIS(TRIETHOXYSILYL)BENZENE $C_{10}H_{34}O_6Si_2$	402.64	130-2 / 0.4	1.015	1.4549
-\$i-OC ₂ H ₅ OC ₂ H ₅	<ol> <li>Inagaki, S. et al. Nature 2002, 416, 304.</li> <li>Wang, W. et al. Chem. Mater. 2003, 15, 4886.</li> </ol>				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [2615-18-1] HMIS: 2-2-1-X		5g \$60.00	25g \$240.00	
	SIB1817.0 BIS(TRIETHOXYSILYL)ETHANE  HEXAETHOXYDISILETHYLENE, BSE  C ₁₄ H ₃₄ O ₆ Si ₂ Vapor pressure, 150°: 10mm	•	96 / 0.3 (-33) 107°C (225°F) oral rat, LD50: 161 mg/kg	0.957	1.4052
OC ₂ H ₅ OC ₂ H ₅ O—SiCH ₂ CH ₂ Si—OC ₂ H ₅ OC ₂ H ₅ OC ₂ H ₅	Additive to silane coupling agents formulations that enhances hydr Employed in corrosion resistant coatings/primers for steel and alur Sol-gels of α,ω-bis(trimethoxysilyl)alkanes reported. ³	olytic stability	o komisie		
	Component in evaporation-induced self-assembly of mesoporous self-assembly of mesoporous self-assembly of mesoporous self-assembly of mesoporous self-assembly and self-assembly of mesoporous self-assembly of the self-assembly of mesoporous self-assembly self-assembly of mesoporous self-assembly	structures. ⁴			
	<ol> <li>Loy, D. A. et al. J. Am. Chem. Soc. 1999, 121, 5413.</li> <li>Lu, Y. et al. J. Am. Chem. Soc. 2000, 122, 5258.</li> <li>Molde, B. et al. Chem. Mater. 1999, 11, 3302.</li> </ol>				
	6. Cho, E. et al. <i>Chem Mater.</i> <b>2004</b> , <i>16</i> , 270. See also SIB1821.0, SIT8185.8				

	name	MW	bp/mm (mp)	D4 ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
OF OF	SIB1821.0 BIS(TRIETHOXYSILYL)METHANE	340.56	114-5 / 3.5	0.9741	1.4098
OEt OEt EtO—SiCH ₂ Si – OEt OEt OEt	4,4,6,6-TETRAETHOXY-3,7-DIOXA-4,6-DISILANONANE  C ₁₃ H ₃₂ O ₆ Si ₂ Intermediate for sol-gel coatings, hybrid inorganic-organic polymers  Forms methylene-bridged mesoporous structures. ¹ 1. Zhang, W. et al. Chem. Mater. <b>2005</b> , <i>17</i> , 6407.				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water  [18418-72-9] TSCA-L HMIS: 3-2-1-X		5g \$24.00	25g \$96.00	
	SIB1824.0 1,8-BIS(TRIETHOXYSILYL)OCTANE C ₂₀ H ₄₆ O ₆ Si ₂	438.76 TOXICITY:	172-5 / 0.75 oral rat, LD50: 16,400 mg/kg	0.926	1.4240
C ₂ H ₅ O) ₃ Si(CH ₂ ) ₈ Si(OC ₂ H ₅ )	Employed in sol-gel synthesis of mesoporous structures Sol-gels of α,ω-bis(trialkoxysilyl)alkanes reported. ¹ 1. Loy, D.A. et al. <i>J. Am. Chem. Soc.</i> <b>1999</b> , <i>121</i> , 5413.				
5	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [52217-60-4] TSCA HMIS: 2-1-1-X		25g \$30.00	100g \$98.00	
}	SIB1829.0  1,2-BIS(TRIMETHOXYSILYL)DECANE  C ₁₆ H ₃₈ O ₆ S ₁₅	382.65	130-2 / 0.4	0.984	1.4303
SHOCH ₃ );	Pendant dipodal silane; employed in high pH HPLC HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [832079-33-1] TSCA-L HMIS: 3-2-1-X		25g \$48.00	100g \$156.00	
осн, осн,	SIB1830.0 1,2-BIS(TRIMETHOXYSILYL)ETHANE C ₈ H ₂₂ O ₆ Si ₂		103-4 / 5 55°C (149°F)	1.068	1.4091
СH ₃ O—\$iCH ₂ CH ₂ \$i —ОСН ₃ ОСН ₃ ОСН ₃	CAUTION: INHALATION HAZARD AIR TRANSPORT FORBIDDEN  Employed in fabrication of multilayer printed circuit boards.   1. Palladino, J. U.S. Patent 5,073,456, 1991.  See also SIB1817.0		inh rat, LC50: 2.4 ppm ure, 20 [*] : 0.08mm		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water  [18406-41-2] TSCA EC 242-285-6 HMIS: 4-2-1-X		25g \$69.00	100g \$224.00	
CH ₃ O) ₃ Si(CH ₂ ) ₂	SIB1831.0 BIS(TRIMETHOXYSILYLETHYL)BENZENE C ₁₆ H ₃₀ O ₆ Si ₂ Mixed isomers Forms high refractive index coatings	374.58 Flashpoint: 1	148-50 / 0.1 193°C (379°F)	1.08	1.4734
(CH ₂ ) ₂ Si(OCH ₃ ) ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [58298-01-4] TSCA HMIS: 2-1-0-X		10g \$33.00	50g \$132.00	
ОСН ₃ ОСН ₃ СН ₃ О—Si(СН ₂₎₆ Si −ОСН ₃	SIB1832.0  1,6-BIS(TRIMETHOXYSILYL)HEXANE $C_{12}H_{30}O_6Si_2$ Sol-Gels of $\alpha$ , $\omega$ -bis(trimethoxysilyl)alkanes reported. ¹	326.54 Flashpoint: 9	161 / 2 95°C (203°F)	1.014	1.4213
ÒСН ₃ ОСН ₃	Loy, D.A. et al. J. Am. Chem. Soc. 1999, 121, 5413.     HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [87135-01-1]     HMIS: 3-2-1-X		10g \$38.00	50g \$152.00	
H ₂ O, Si-CH ₂ ————————————————————————————————————	SIB1832.2  1,4-BIS(TRIMETHOXYSILYLMETHYL)BENZENE	346.53	124-5 / 0.05	1.097	1.47 25
ngo 🗀 odig	Forms adherent films on metal substrates HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [193358-40-6] HMIS: 3-1-1-X		10g \$180.00		
(CH ₂ ) ₃ Si(OCH ₃ ) ₃	SIB1833.4  1,3-BIS(TRIMETHOXYSILYLPROPYL)BENZENE  C ₁₈ H ₉₄ O ₆ Si ₂	402.64			
(CH ₂ ) ₅ Si(OCH ₅ ) ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-2-1-X		5g \$145.00		
çiis A cucusi-c	SIC2265.5 (CHLORODIMETHYLSILYL)-6-[2-(CHLORODIMETHYL-SILYL)ETHYL]BICYCLOHEPTANE  1 C ₁₃ H ₂₆ Cl ₂ Si ₂ Mixture of 1 and 2 regio isomers, exo a	309.43		1.03	1.4863
CII,	Forms polymers HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [220527-24-2] HMIS: 3-2-1-X		25g \$45.00		
ОС2H5 ОС2H5 H3C—SiCH2CH2Si—ОС2H5	SIT8185.8 1-(TRIETHOXYSILYL)-2-(DIETHOXYMETHYLSILYL)- ETHANE	324.56 Flashpoint:	100 / 0.5 102°C (216°F)	0.946	1.4112
$OC_2H_5$ $OC_2H_5$	C ₁₃ H ₃₂ O ₅ Si Dipodal silane; forms abrasion-resistant sol-gel coatings Improves hydrolytic stability of silane adhesion promotion systems		oral rat, LD50: >500 mg/kg		
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [18418-54-7] TSCA HMIS: 3-1-1-X		25g \$40.00	100g \$130.00	2kg \$840.00

## **Polymeric Hydrophobic Silanes**

Polymeric Surface Bonding

	name	MW	bp/mm (mp)	$D_4^{20}$ $n_0^{20}$
$\begin{array}{ccc} \mathrm{CH_2} & \mathrm{CH_2} \\ \mathrm{CH} & \mathrm{II} \\ \mathrm{CH} & \mathrm{CH} \\ -\mathrm{CH_2CHCH_2CHCH_2CH}\\ \mathrm{CH_2CH_2Si(OC_2H_5)_3} \end{array}$	Polybutadiene SSP-055 TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in toluene Viscosity: 100-200 cSt Coupling agent for EPDM resins	3,500-4,500		0.90
	[72905-90-9] TSCA HMIS: 2-4-1-X	store <5°	100g \$60.00	2kg \$780.00
CH ₂ CH ₂ CH CH	SSP-056 TRIETHOXYSILYL MODIFIED POLY-1,2-BUTADIENE, 50% in volatile silicone Viscosity: 100-200 cSt Primer coating for silicone rubbers	3,500-4,500		0.93
2 2 : 2 33	[72905-90-9] TSCA HMIS: 2-3-1-X	store <5°	100g \$68.00	
CH2 CH2 CH CH — CH2CHCH2CHCH2CH— CH3CH2Si(OC2H3)2 CH3	SSP-058 DIETHOXYMETHYLSILYL MODIFIED POLY-1,2-BUTA- DIENE, 50% in toluene Viscosity: 75-150 cSt Water tree resistant additive for crosslinkable HDPE cable cladding HMIS: 2-4-1-X	3,500-4,500 store <5°	100g \$86.00	0.90
(CH2CH)m(CH2CH)n(CH2CH = CHCH2)p - (CH2CH)m(CH2CH)n(CH2CH = CHCH2)p - (CH2CH)m(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(CH2CH)n(C	SSP-255 (30-35% TRIETHOXYSILYLETHYL)ETHYLENE- (35-40% 1,4-BUTADIENE)-(25-30% STYRENE) terpolymer, 50% in toluen Viscosity: 20-30 cSt	4,500-5,500 e		
$CH_2CH_2Si(OC_2H_5)_3$	HMIS: 2-3-1-X		100g \$86.00	

## **Reactive Polydimethylsiloxane Oligomers**

## **Chlorine Terminated PolyDimethylsiloxanes**

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g	Price/1kg
DMS-K05	3 - 6	425-600	1.00	\$55.00	\$358.00
DMS-K13	20-50	2000-4000	0.99	\$120.00	
DMS-K26	500-800	15,000-20,000	0.99	\$94.00	

#### Dimethylamino Terminated PolyDimethylsiloxanes

Dimethylamino	Terminated PolyI	CAS:	[67762-92-9] TSCA	
Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g
DMS-N05	3 - 8	450-600	0.93	\$160.00

#### **Ethoxy Terminated PolyDimethylsiloxanes**

	Ethoxy Termina	Ethoxy Terminated PolyDimethylsiloxanes CAS: [70851-25-1] TSCA								
Code Viscosity		Weight	Gravity	Price/100g	Price/1kg					
	DMS-XE11	5-10	800-900	0.94	\$32.00	\$210.00				

### Methoxy Terminated PolyDimethylsiloxanes

		Molecular	Specific		
Code	Viscosity	Weight	Gravity	Price/100g	Price/1kg
DMS-XM11	5-12	900-1000	0.94	\$29.00	\$188.00

## Silanol Terminated PolyDimethylsiloxanes

CAS:	[7013	1-67-8]	TSCA
------	-------	---------	------

CAS: [67923-13-1] TSCA

CAS: [68951-97-3] TSCA

		Molecular			Specific	Refractive			
Code	Viscosity	Weight	% (OH)	(OH) - Eq/kg	Gravity	Index	Price/100g	Price/3kg	Price/16kg
DMS-S12	16-32	400-700	4.5-7.5	2.3-3.5	0.95	1.401	\$19.00	\$124.00	\$496.00
DMS-S14	35-45	700-1500	3.0-4.0	1.7-2.3	0.96	1.402	\$18.00	\$117.00	\$460.00
DMS-S15	45-85	2000-3500	0.9-1.2	0.53-0.70	0.96	1.402	\$18.00	\$117.00	\$460.00

# Hydrophilic Silane Properties Polar - Non-hydrogen Bonding

	name			MW	bp/mm (mp)	D ₄ ²⁰	<b>n</b> _D ²⁰
	POLYPROPYLEN Hydrophilic o W/tin catalys HYDROLYTIO	dipodal silane st forms moisture-cross-linkable res C SENSITIVITY: 7: reacts slowly with r	noisture/water		>110°C (>230°F) ,000-10,000 cSt.	1.00	1.452 ²⁵
	[75009-88-0] SIB1824.9	TSCA	HMIS: 3-1-1-X		100g \$19.00	2kg \$228.00	
CH ² O(CH ² CH ² O) ⁶² CH ² CCH ² OCH ² CH ³ Och (CH ³ O) ² CH ³ OCH ² CH ³ OCH ² O	1,3-[BIS(3-TRIETHOXY]-2-METHYLE $C_{50}H_{104}O_{20}Si_2$ (av)	HOXYSILYLPROPYL)POLYETHYI ENEPROPANE nal hydrophilic dipodal coupling ag		1113.50			
	HYDROLYTIC	SENSITIVITY: 7: reacts slowly with r	noisture/water HMIS: 2-2-1-X		1.0g \$292.00		
H ₃ C CH ₃     NCCHCH ₂ CH ₂ Si — CI	SIC2436.0 (3-CYANOBUTYL C ₇ H ₁₄ CINSi	)DIMETHYLCHLOROSILANE	1 IIWIIG. 2-2-1-A	175.73	80-4 / 1	0.993	
CH ₃		SENSITIVITY: 8: reacts rapidly with		olvents	25~ \$40.00	100~ \$120.00	
	0100407.0		HMIS: 3-2-1-X		25g \$40.00	100g \$130.00	
H ₃ C Cl I I NCCHCH ₂ CH ₂ Si—CH ₃	SIC2437.0 (3-CYANOBUTYL C ₆ H ₁₁ Cl ₂ NSi	)METHYLDICHLOROSILANE		196.17	63 / 0.3	1.104	
CI	HYDROLYTIC [71550-62-4]	C SENSITIVITY: 8: reacts rapidly with TSCA EC 275-613-1	moisture, water, protic so HMIS: 3-2-1-X	olvents	25g \$40.00	100g \$130.00	
H ₃ C OCH ₃ NCCHCH ₂ CH ₂ Si — CH ₃ OCH ₃	C ₈ H ₁₇ NO ₂ Si	)METHYLDIMETHOXYSILANE	noisture/water	187.32 Flashpoint: 9	77 / 1.5 93°C (199°F)	0.947	1.4213 ²⁵
	[793681-94-4]	TSCA	HMIS: 3-2-1-X		25g \$88.00		
H ₃ C CI     NCCHCH ₂ CH ₂ Si—CI	$C_5H_8CI_3NSi$	)TRICHLOROSILANE		216.57	61-3 / 2	1.22	1.469 ²⁵
ĊI	[163155-56-4]	SENSITIVITY: 8: reacts rapidly with	moisture, water, protic so HMIS: 3-2-1-X	blvents	25g \$39.00	100g \$127.00	
H ₃ C OCH ₂ CH ₃        CCHCH ₂ CH ₂ Si—OCH ₂ CH ₃	SIC2439.0 3-CYANOBUTYLT C ₁₁ H ₂₃ NO ₃ Si	RIETHOXYSILANE		245.39			
OCH₂CH₃	HYDROLYTIC	SENSITIVITY: 7: reacts slowly with r	noisture/water HMIS: 2-2-1-X		25g \$32.00		
N≡C−CH ₂ CH ₂ ,CI Si H ₃ C CI	C ₄ H ₇ Cl ₂ NSi Vapor pressi	METHYLDICHLOROSILANE ure, 60°: 4 mm		168.10 Flashpoint: 6	60-4 / 4 60°C (140°F)	1.2015	1.4550 ²⁵
		r polar silicones used in GC phase C SENSITIVITY: 8: reacts rapidly with TSCA EC 213-985-9		olvents	25g \$132.00		
$N \equiv C - CH_2CH_2SiCl_3$	2-CYANOETHYLT C ₃ H ₄ Cl ₃ NSi	TRICHLOROSILANE  ure, 85°: 12 mm		188.52 TOXICITY:	84-6 / 10 (32-3) oral rat, LD50: 2,000 mg/kg	1.356	1.4615
		C SENSITIVITY: 8: reacts rapidly with TSCA EC 213-986-4	moisture, water, protic so HMIS: 3-2-1-X	olvents	10g \$29.00	50g \$116.00	

	name	MW	bp/mm (mp)	<b>D</b> 4 ²⁰	<b>n</b> _D ²⁰
$N = C - CH_2CH_2Si(OC_2H_5)_3$	$SIC2445.0 \\ 2\text{-CYANOETHYLTRIETHOXYSILANE} \\ C_9H_{19}NO_3Si \\ Crosslinker for moisture-cure silicone RTVs - improves fuel resistance and the substitution of the su$		224-5 '6°C (187°F) oral rat, LD50: 5,630 mg/kg	0.9792	1.4140
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water  [919-31-3] TSCA EC 213-050-5 HMIS: 2-2-0-X  SIC2446.0	7	25g \$15.00	100g \$49.00	2kg \$360.00
$N = C - CH_2CH_2Si(OCH_3)_3$	2-CYANOETHYLTRIMETHOXYSILANE  C ₆ H ₁₃ NO ₃ Si  yc of treated surfaces: 34 mN/m  Crosslinker for moisture-cure silicones - improves solvent resistance	175.26 Flashpoint: 7	112 / 15 '9°C (174°F)	1.079	1.4126
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water           [2526-62-7]         TSCA         EC 219-764-3         HMIS: 3-2-1-X           SIC2451.0         SIC2451.0		25g \$42.00	100g \$138.00	
CH(CH ₃ ) ₂ N≡C−CH ₂ CH ₂ CH ₂ Si −N(CH ₃ ) ₂ CH(CH ₃ ) ₂	$3\text{-CYANOPROPYLDIISOPROPYL}(DIMETHYLAMINO)-SILANE \\ 4\text{-}[DIMETHYLAMINOBIS(1\text{-}METHYLETHYL)SILYL]BUTANENITRILE \\ C_{12}H_{28}N_2Si \\ \\$	226.44	96-8 / 0.2	0.89	
	Stable cyanofunctional bonded phase HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [163794-91-0] TSCA HMIS: 3-2-1-X		10g \$132.00		
CH ₃ N≡C−CH ₂ CH ₂ CH ₂ Si −Cl	SIC2452.0  3-CYANOPROPYLDIMETHYLCHLOROSILANE  4-(CHLORODIMETHYLSILYL)BUTYRONITRILE  C ₀ H ₁₂ CINSi	161.71 Flashpoint: 8	108-9 / 15 5°C (185°F)	0.986	1.4460
CH ₃	Coupling agent for antibodies. ¹ Allows formation of electrostatic gated nanopore electrodes. ² 1. Falipou, S. et al. <i>Bioconjugate Chem.</i> <b>1999</b> , <i>10</i> , 36.  2. Wang, G. et al. <i>J. Am. Chem. Soc.</i> <b>2006</b> , <i>128</i> , 7679.  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic so	lvents			
	[18156-15-5] TSCA EC 242-039-8 HMIS: 3-2-1-X		25g \$40.00	100g \$130.00	
$N \equiv C - CH_2CH_2CH_2S_1 - CH_3$ $CI$	SIC2453.0 3-CYANOPROPYLMETHYLDICHLOROSILANE $C_5H_9Cl_2NSi$		79-82 / 1 12°C (198°F) oral, rat, LD50: 2,830 mg/kg	1.145 ²⁵	1.4551 ²⁵
	Monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for microelectrodes permeable to polar monomer for silicone films for silicone		25g \$39.00	100g \$127.00	
$\begin{array}{c} \text{OCH}_3\\ \text{N} \equiv \text{C} + \text{CH}_2\text{CH}_2\text{CH}_2\text{Si} + \text{CH}_3\\ \text{OCH}_3 \end{array}$	SIC2453.5 3-CYANOPROPYLMETHYLDIMETHOXYSILANE C ₇ H ₁₅ NO ₂ Si See also SIC2437.5	173.29	82-3 / 3	0.9970	1.4235
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [153723-40-1] HMIS: 3-2-1-X SIC2454.0		5g \$29.00	25g \$114.00	
CI N≡C−CH ₂ CH ₂ CH ₂ Si −CI CI	3-CYANOPROPYLTRICHLOROSILANE 4-(TRICHLOROSILYL)BUTYRONITRILE C ₄ H ₆ Cl ₃ NSi	202.54 Flashpoint: 7	93-4 / 8 5°C (167°F)	1.302	1.465
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic so [1071-27-8] TSCA EC 213-990-6 HMIS: 3-2-1-X SIC2455.0	lvents	25g \$24.00	100g \$78.00	
$\begin{array}{c} \text{QC}_2\text{H}_5 \\ \text{N=C-CH}_2\text{CH}_2\text{CH}_2\text{S}_1 - \text{OC}_2\text{H}_5 \\ \text{OC}_2\text{H}_5 \end{array}$	3-CYANOPROPYLTRIETHOXYSILANE C ₁₀ H ₂₁ NO ₃ Si	231.37 Flashpoint: 7 TOXICITY: 0 Viscosity: 2.3	oral rat, LD50: 2,460 mg/kg	0.961	1.4174
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [1067-47-6] TSCA EC 213-931-4 HMIS: 3-2-1-X		25g \$32.00	100g \$104.00	
OCH ₃ N≡C−CH ₂ CH ₂ CH ₂ Si −OCH ₃ OCH ₃	SIC2456.0  3-CYANOPROPYLTRIMETHOXYSILANE  C ₇ H ₁₅ NO ₃ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	189.29	90-2 / 7	1.027	1.4416
20077	[55453-24-2] TSCA EC 259-646-9 HMIS: 3-2-1-X SIC2456.3		10g \$30.00	50g \$140.00	
NC(CH ₂ ) ₁₁ SiCl ₃	11-CYANOUNDECYLTRICHLOROSILANE  C ₁₂ H ₂₂ Cl ₃ NSi  Long chain organofunctional silane	314.76	162-4 / 1	1.075	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic so [724460-16-6] HMIS: 3-2-1-X	ivents	5g \$153.00		

# **Hydrophilic Silane Properties**

Polar - Hydrogen Bonding

	name		MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{_{\scriptscriptstyle 20}}$
Q	SIA0006.0 ACETAMIDOPROPYLTRIMETHOXYSILANE		221.33	162-5 / 2-3		1.441
CH3CNHCH2CH2CH2Si(OCH3)3	$C_8H_{19}NO_4Si$ HYDROLYTIC SENSITIVITY: 7: reacts slowly w					
	[57757-66-1]	HMIS: 3-2-1-X		10g \$152.00		
CH ₃ COCH ₂ CH ₂ Si −CI CH ₃	SIA0010.0 ACETOXYETHYLDIMETHYLCHLOROSILANE C ₆ H ₁₃ CIO ₂ Si		180.71 Flashpoint: 6	108-9 / 50 3°C (145°F)	1.031 ²⁵	1.4301 25
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly v [18306-45-1]	with moisture, water, protic so HMIS: 3-2-1-X		25g \$66.00		
Q CI	SIA0015.0					
сн₃сосн₂сн₂si —сн₃ сі	$\begin{split} & \text{ACETOXYETHYLMETHYLDICHLOROSILANE} \\ & \text{C}_{\text{5}}\text{H}_{10}\text{Cl}_{2}\text{O}_{2}\text{Si} \\ & \text{HYDROLYTIC SENSITIVITY: 8: reacts rapidly v} \end{split}$		201.12 Flashpoint: 6 olvents	117 / 62 5°C (149°F)	1.177 ²⁵	1.4390 25
	[18163-34-3] TSCA EC 242-045-	-0 HMIS: 3-2-1-X		25g \$59.00		
Q CI CH3COCH2CH2Si —CI CI	SIA0020.0  ACETOXYETHYLTRICHLOROSILANE  C ₄ H ₇ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 8: reacts rapidly v	with moisture. water, protic so	221.54 Flashpoint: 8:	143 / 70 2°C (180°F)	1.272 ²⁵	1.4427 ²⁵
	[18204-80-3] TSCA EC 242-092-			25g \$58.00	100g \$192.00	
O OC ₂ H ₅	SIA0025.0 ACETOXYETHYLTRIETHOXYSILANE $C_{10}H_{22}O_5Si$		250.37	60 / 0.2	0.983	1.410
OC ₂ H ₅	>280° rearranges to acetoxytriethoxysilane  1. Ezbiansky, K. A. et al. Chemical Processing of HYDROLYTIC SENSITIVITY: 7: reacts slowly w [22538-45-0]	of Dielectrics, Insulators & Ele		MRS Proc. <b>2000</b> ; <i>606</i> , 251.		
O OCH ₃ CH ₃ COCH ₂ CH ₂ Si — OCH ₃ OCH ₃	SIA0030.0 ACETOXYETHYLTRIMETHOXYSILANE, 95% $C_7H_{16}O_9Si$		208.29	108-9 / 27	1.061	
	HYDROLYTIC SENSITIVITY: 7: reacts slowly w	vith moisture/water				
00113						
oons	[72878-29-6] TSCA	HMIS: 3-3-1-X		25g \$52.00		
O CH ₃ O	SIA0040.0 ACETOXYMETHYLDIMETHYLACETOXYSILAN C ₇ H ₁₄ O ₄ Si	NE	190.27 Flashpoint: 6	66-9 / 7	1.0420	1.4388
O CH ₃ O	SIA0040.0 ACETOXYMETHYLDIMETHYLACETOXYSILAN C ₇ H ₁₄ O ₄ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly w	NE with moisture/water		66-9 / 7 3°C (145°F)	1.0420	1.4388
O CH ₃ O CH ₃ O CCH ₂ Si – OCCH ₃	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN  C ₇ H ₁₄ O ₄ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly w  [5833-57-8]	NE		66-9 / 7	1.0420	1.4388
O CH ₃ O  I ₃ COCH ₂ Si – OCCH ₃ CH ₃	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN  C ₇ H ₁₄ O ₄ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly w  [5833-57-8]  SIA0050.0  ACETOXYMETHYLTRIETHOXYSILANE  C ₉ H ₂₀ O ₅ Si	NE with moisture/water HMIS: 3-2-1-X		66-9 / 7 3°C (145°F)	1.0420	1.4388
O CH ₃ O H ₃ COCH ₂ Si – OCCH ₃ CH ₃	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN  C ₇ H ₁₄ O ₄ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly w  [5833-57-8]  SIA0050.0  ACETOXYMETHYLTRIETHOXYSILANE	with moisture/water HMIS: 3-2-1-X	Flashpoint: 6	66-9 / 7 3°C (145°F) 25g \$78.00		
O CH ₃ O CH ₃ COCH ₂ Si – OCCH ₃ CH ₃ O OC ₂ H ₅ H ₃ COCH ₂ Si – OC ₂ H ₅ OC ₂ H ₅	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN  C ₇ H ₁₄ O ₄ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly w  [5833-57-8]  SIA0050.0  ACETOXYMETHYLTRIETHOXYSILANE  C ₉ H ₂₀ O ₅ Si  Hydrolyzes to form stable silanol solutions  HYDROLYTIC SENSITIVITY: 7: reacts slowly w	with moisture/water HMIS: 3-2-1-X in neutral water with moisture/water	Flashpoint: 6	66-9 / 7 3°C (145°F) 25g \$78.00	1.042 ²⁵	
Q CH ₃ Q H ₃ COCH ₂ Si -OCCH ₃ CH ₃ Q OC ₂ H ₅ H ₃ COCH ₂ Si -OC ₂ H ₅ OC ₂ H ₅ Q OCH ₃	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN  C ₇ H ₁₄ O ₄ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly w  [5833-57-8]  SIA0050.0  ACETOXYMETHYLTRIETHOXYSILANE  C ₉ H ₂₀ O ₅ Si  Hydrolyzes to form stable silanol solutions  HYDROLYTIC SENSITIVITY: 7: reacts slowly w  [5630-83-1]  SIA0055.0  ACETOXYMETHYLTRIMETHOXYSILANE, 95%  C ₆ H ₁₄ O ₅ Si	with moisture/water HMIS: 3-2-1-X  in neutral water with moisture/water HMIS: 2-2-1-X	Flashpoint: 6	66-9 / 7 3°C (145°F) 25g \$78.00 106 / 15 25g \$62.00	1.042 ²⁵	
Q CH ₃ Q H ₃ COCH ₂ Si – OCCH ₃ CH ₃ Q OC ₂ H ₅ CH ₃ COCH ₂ Si – OC ₂ H ₅ OC ₂ H ₅	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN C ₇ H ₁₄ O ₄ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly w [5833-57-8]  SIA0050.0  ACETOXYMETHYLTRIETHOXYSILANE C ₉ H ₂₀ O ₅ Si Hydrolyzes to form stable silanol solutions HYDROLYTIC SENSITIVITY: 7: reacts slowly w [5630-83-1]  SIA0055.0  ACETOXYMETHYLTRIMETHOXYSILANE, 95%	with moisture/water HMIS: 3-2-1-X  in neutral water with moisture/water HMIS: 2-2-1-X	Flashpoint: 6: 236.34	66-9 / 7 3°C (145°F) 25g \$78.00 106 / 15 25g \$62.00	1.042 ²⁵	1.4092
Q CH ₃ Q CH ₃ COCH ₂ Si – OCCH ₃ CH ₃ Q OC ₂ H ₅ CH ₃ COCH ₂ Si – OC ₂ H ₅ OC ₂ H ₅ Q OCH ₃ CH ₃ COCH ₂ Si – OCH ₃	SIA0040.0  ACETOXYMETHYLDIMETHYLACETOXYSILAN C ₇ H ₁₄ O ₄ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly w [5833-57-8]  SIA0050.0  ACETOXYMETHYLTRIETHOXYSILANE C ₉ H ₂₀ O ₅ Si Hydrolyzes to form stable silanol solutions HYDROLYTIC SENSITIVITY: 7: reacts slowly w [5630-83-1]  SIA0055.0  ACETOXYMETHYLTRIMETHOXYSILANE, 95% C ₆ H ₁₄ O ₅ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly w [65625-39-0] TSCA-L  SIA0078.0  2-[(ACETOXY(POLYETHYLENEOXY))PROPYL]-TRIETHOXYSILANE, 95% C-10, 100 TSCA-L	with moisture/water HMIS: 3-2-1-X  in neutral water with moisture/water HMIS: 2-2-1-X  with moisture/water HMIS: 3-2-1-X	Flashpoint: 6: 236.34	66-9 / 7 3°C (145°F) 25g \$78.00 106 / 15 25g \$62.00 190-1 6°C (133°F)	1.042 ²⁵ 100g \$202.00 1.085	1.4092

	name		MW	bp/mm (mp)	$D_4^{20}$	$n_{\scriptscriptstyle D}^{^{20}}$
O.	SIA0090.0					
CI CI	ACETOXYPROPYLMETHYLDICHLOROSILANE		215.15	142 / 73	1.151 25	1.4434 ²⁵
CH ₂ CH ₂ CH ₂ Si -CH ₃	C ₆ H ₁₂ Cl ₂ O ₂ Si		Flashpoint: 85°C			
CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu	ure, water, protic solve	•			
		HMIS: 3-2-1-X		25g \$62.00		
	SIA0100.0					
OCH ₃	ACETOXYPROPYLTRIMETHOXYSILANE		222.31	92 / 2	1.062	1.4146
CH2CH2Si —OCH3	$C_8H_{18}O_5Si$		Flashpoint: 93°C	C (199°F)		
OCH ₃	γc of treated surfaces: 37.5 mN/m					
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture	ire/water				
	[59004-18-1] EC 261-552-8 H	HMIS: 3-1-1-X		25g \$20.00	100g \$65.00	
	SIA0114.0					
APPENDING TOTAL	11-ACETOXYUNDECYLTRICHLOROSILANE		347.78	147-9 / 1	1.084	
$CH_2(CH_2)_{10}SiCl_3$	$C_{13}H_{25}CI_3O_2Si$		Flashpoint: >110	0°C (>230°F)		
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistu		ents			
	<u> </u>	HMIS: 3-1-1-X		10g \$85.00		
QC ₂ H ₂	SIA0115.0					
CH ₂ ) ₁₁ Si —OC ₂ H ₅	11-ACETOXYUNDECYLTRIETHOXYSILANE		376.61			
OC.H.	C ₁₉ H ₄₀ O ₅ Si					
23	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur			40. 6440.65		
		HMIS: 2-2-1-X		1.0g \$116.00		
	SIA0120.2					
	(N-ACETYLGLYCYL)-3-AMINOPROPYLTRIMETHOXY-		278.38	· · · · · · · · · · · · · · · · · · ·	71-3) 0.80	
	SILANE, 5% in methanol		Flashpoint: 15°C	C (59°F)		
O	C ₁₀ H ₂₂ N ₂ O ₅ Si					
H ₂ CNH(CH ₂ ) ₃ Si(OC	H ₃ ) ₃ Amino acid-tipped silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture	uro/water				
	•	ire/water HMIS: 3-4-1-X		25g \$40.00		
		O. 0-4-1-A		20g φ40.00		
	SIA0599.4		007.405		2 22 4	4.4500
	N-3-[(AMINO(POLYPROPYLENOXY)]AMINOPROPYL-		337-435		0.984	1.4508
9			•			
		3-4 propylenoxy unit	S			
and the best of the second second second	(OCH ₃ ) ₃ Contains amine-terminated polypropylene oxide	3-4 propylenoxy unit	S			
CH) ₂₋₃ OCH ₂ CHNH(CH ₂ ) ₃ Sid CH ₃	(OCH ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.		S			
and the best of the second second second	(OCH ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.	ıre/water	S	25a \$76 NN		
and the best of the second second second	OCH ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur		S	25g \$76.00		
and the best of the second second second	Coch ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur  F SIB0959.0	ıre/water		-	4 404	1.4906
CH ₃	Coch ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur  F SIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE	ıre/water	s 284.38	25g \$76.00 145 / 0.2	1.104	1.4806
and the best of the second second second	Coch ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  F SIB0959.0 BENZOYLOXYPROPYLTRIMETHOXYSILANE C ₁₃ H ₂₀ O ₅ Si	ure/water HMIS: 2-2-1-X		-	1.104	1.4806
CH ₃	Coch ₃ ) ₃ Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur  BIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C ₁₃ H ₂₀ O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur	ure/water HMIS: 2-2-1-X		145 / 0.2	1.104	1.4806
CH3 } C−O(CH ₂ ) ₃ Si(OCH ₃ ) ₃	Cocha)s Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C19H200sSi  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6] TSCA F	ure/water HMIS: 2-2-1-X		-	1.104	1.4806
Сн ₃ С—О(СН ₂₎₃ Si(ОСН ₃₎₃ СН ₂ (СН ₂₎₈ СН ₃	Cocha)s Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur F SIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C19H200sSi  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6] TSCA F SIB1815.1	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X	284.38	145 / 0.2 25g \$72.00		1.4806
CH3 } C−O(CH ₂ ) ₃ Si(OCH ₃ ) ₃	Cocha)s Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H2005Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X		145 / 0.2	1.104	1.4806
CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃	Cochia)s Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H2005Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X	284.38	145 / 0.2 25g \$72.00		1.4806
CH ₃ CH ₃ CH ₂	Cochia)s Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H2005Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H36CI603Si2	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X	284.38	145 / 0.2 25g \$72.00		1.4806
CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C ₁₃ H ₂₀ O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C ₁₉ H ₃₆ Cl ₆ O ₃ Si ₂ Dipodal C ₁₈ analog with embedded hydrophilicity	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X	284.38 583.40	145 / 0.2 25g \$72.00		1.4806
CH ₃ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C ₁₃ H ₂₀ O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C ₁₉ H ₃₆ Cl ₆ O ₃ Si ₂ Dipodal C ₁₈ analog with embedded hydrophilicity HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve	284.38 583.40	145 / 0.2 25g \$72.00 190-200 / 0.4		1.4806
CH ₃ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the state of the state o	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X	284.38 583.40	145 / 0.2 25g \$72.00		1.4806
CH ₃ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H2005Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H39CI603Si2  Dipodal C18 analog with embedded hydrophilicity HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [862912-02-5]  SIB1815.3	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve	284.38 583.40	145 / 0.2 25g \$72.00 190-200 / 0.4 10g \$124.00	1.158	1.4806
CH ₃ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C ₁₃ H ₂₀ O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6]  TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C ₁₉ H ₃₆ Cl ₆ O ₃ Si ₂ Dipodal C ₁₈ analog with embedded hydrophilicity HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [862912-02-5]  SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve	284.38 583.40	145 / 0.2 25g \$72.00 190-200 / 0.4		1.4806
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₂ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O CH ₂ CH ₂ O(CH ₂ ) ₃ SiCl ₃	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  SIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H20O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  [76241-02-6] TSCA  SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H3 ₀ Cl ₆ O ₃ Si ₂ Dipodal C1 ₈ analog with embedded hydrophilicity  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture.  [862912-02-5]  SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve	284.38 583.40	145 / 0.2 25g \$72.00 190-200 / 0.4 10g \$124.00	1.158	1.4806
CH ₃ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. HYDROLYTIC SENSITIVITY: 8: reacts represented by HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture. HYDROLYTIC SENSITIVITY: 8: reac	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X	284.38 583.40 ents	145 / 0.2 25g \$72.00 190-200 / 0.4 10g \$124.00 220-2 / 0.9	1.158	1.4806
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H20O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  [76241-02-6]  TSCA  HSIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H3 ₀ Cl ₆ O ₃ Si ₂ Dipodal C1 ₈ analog with embedded hydrophilicity  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture.  [862912-02-5]  SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%  C20H4 ₀ Cl ₆ O ₃ Si ₂ Dipodal hydrophobic surface treatment with embedded.	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve	284.38 583.40 ents 597.42 or chromatograph	145 / 0.2 25g \$72.00 190-200 / 0.4 10g \$124.00 220-2 / 0.9	1.158	1.4806
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the state of the state o	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve HMIS: 3-1-1-X ded hydrophobicity 1 ure, water, protic solve	284.38 583.40 ents 597.42 or chromatograph	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158	1.4806
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  SIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H20O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture.  [76241-02-6] TSCA  HSIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H3 ₈ Cl ₆ O ₃ Si ₂ Dipodal C1 ₈ analog with embedded hydrophilicity  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture.  [862912-02-5] HSIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%  C20H4 ₉ Cl ₆ O ₃ Si ₂ Dipodal hydrophobic surface treatment with embeddenty Porolytic SENSITIVITY: 8: reacts rapidly with moisture.	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve	284.38 583.40 ents 597.42 or chromatograph	145 / 0.2 25g \$72.00 190-200 / 0.4 10g \$124.00 220-2 / 0.9	1.158	1.4806
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. HYDROLYTIC SENSITIVITY: 8: reacts slowly with moisture. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture.	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve HMIS: 3-1-1-X ded hydrophobicity 1 ure, water, protic solve	284.38 583.40 ents 597.42 or chromatograph	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158	
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. In SIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H20O ₅ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. In SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H3 ₈₀ Cl ₆ O ₃ Si ₂ Dipodal C1 ₈ analog with embedded hydrophilicity HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture. In SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%  C2 ₂₀ H4 ₉₀ Cl ₆ O ₃ Si ₂ Dipodal hydrophobic surface treatment with embedded HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture. In SIB1824.82  N,N'-BIS-[(3-TRIETHOXYSILYLPROPYL)AMINO-	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve HMIS: 3-1-1-X ded hydrophobicity 1 ure, water, protic solve	284.38 583.40 ents 597.42 or chromatograph	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158	1.4806 1.4583 ²⁵
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur FSIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H20O5Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur [76241-02-6] TSCA SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H3s(CI ₆ O ₃ Si ₂ Dipodal C1 ₈ analog with embedded hydrophilicity HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [862912-02-5] SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%  C20H4oCI ₆ O ₃ Si ₂ Dipodal hydrophobic surface treatment with embedded HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur [862911-99-7]  SIB1824.82  N,N'-BIS-[(3-TRIETHOXYSILYLPROPYL)AMINO-CARBONYL]POLYETHYLENE OXIDE (10-15 EO)	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve HMIS: 3-1-1-X ded hydrophobicity 1 ure, water, protic solve	284.38 583.40 ents 597.42 or chromatographints	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158	
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. HYDROLYTIC SENSITIVITY: 8: reacts slowly with moisture. HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture. HYDROLYTIC SENSITIVITY:	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve HMIS: 3-1-1-X ded hydrophobicity 1 ure, water, protic solve	284.38 583.40 ents 597.42 or chromatographints	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be	
CH ₃ CH ₂ CCH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ CH ₂	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the state of	ure/water HMIS: 2-2-1-X ure/water HMIS: 3-2-1-X ure, water, protic solve HMIS: 3-1-1-X ded hydrophobicity 1 ure, water, protic solve	284.38 583.40 ents 597.42 or chromatographints	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifing coatings can be formed from combinations of	
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₂ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O  CH ₂ CH	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the property of the prope	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X  ded hydrophobicity f ure, water, protic solve HMIS: 3-1-1-X	284.38 583.40 ents 597.42 or chromatographints	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be formed from combinations of polyalkylene oxide functional silanes and film-forming	
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O(CH ₂ ) ₃ SiCl ₃ CH ₂ CH ₃	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the state of	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X  ded hydrophobicity f ure, water, protic solve HMIS: 3-1-1-X	284.38 583.40 ents 597.42 or chromatographints	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be formed from combinations of polyalkylene oxide functional	
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O(CH ₂ ) ₃ SiCl ₃ O(CH ₂ ) ₄ SiCl ₄ O(CH ₂ ) ₅ Si	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the property of the prope	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X  ded hydrophobicity f ure, water, protic solve HMIS: 3-1-1-X	284.38  583.40  597.42  or chromatographents  1,000 - 1,200	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be formed from combinations of polyalkylene oxide functional silanes and film-forming	
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O(CH ₂ ) ₃ SiCl ₃ CH ₂ CH ₃	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. In SIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H2005Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture. In SIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H36Cl603Si2 Dipodal C18 analog with embedded hydrophilicity HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture. In SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%  C20H46Cl603Si2 Dipodal hydrophobic surface treatment with embedded HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture. In SIB1824.82  N,N'-BIS-[(3-TRIETHOXYSILYLPROPYL)AMINO-CARBONYL]POLYETHYLENE OXIDE (10-15 EO) UREASIL Dipodal hydrophilic silane Viscosity: 300-350 cSt In combination with sulfolane forms gel electrolyte for	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X  ded hydrophobicity f ure, water, protic solve HMIS: 3-1-1-X	284.38  583.40  597.42  or chromatographents  1,000 - 1,200	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be formed from combinations of polyalkylene oxide functional silanes and film-forming	
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O(CH ₂ ) ₃ SiCl ₃ O(CH ₂ ) ₄ SiCl ₄ O(CH ₂ ) ₅ Si	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture in the property of the prope	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X  ded hydrophobicity f ure, water, protic solve HMIS: 3-1-1-X	284.38  583.40  597.42  or chromatographents  1,000 - 1,200	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be formed from combinations of polyalkylene oxide functional silanes and film-forming	
CH ₃ CH ₃ CH ₂ CH ₂ (CH ₂ ) ₃ Si(OCH ₃ ) ₃ CH ₂ (CH ₂ ) ₈ CH ₃ O(CH ₂ ) ₃ SiCl ₃ O(CH ₂ ) ₄ SiCl ₄ O(CH ₂ ) ₅ Si	Contains amine-terminated polypropylene oxide Coupling agent with film-forming capability.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur  ESIB0959.0  BENZOYLOXYPROPYLTRIMETHOXYSILANE  C13H20Q5SI  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moistur  [76241-02-6]  TSCA  HSIB1815.1  1,3-BIS(3-TRICHLOROSILYLPROPOXY)-2-DECYLOXY-PROPANE  C19H36(Q3Si2  Dipodal C18 analog with embedded hydrophilicity  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moistur  [862912-02-5]  SIB1815.3  3,3-BIS(TRICHLOROSILYLPROPOXYMETHYL)-5-OXA-TRIDECANE, 95%  C20H40CI6Q3Si2  Dipodal hydrophobic surface treatment with embedded hydropholyTic SENSITIVITY: 8: reacts rapidly with moistur  [862911-99-7]  SIB1824.82  N,N'-BIS-[(3-TRIETHOXYSILYLPROPYL)AMINO-CARBONYL]POLYETHYLENE OXIDE (10-15 EO)  UREASIL  Dipodal hydrophilic silane  Viscosity: 300-350 cSt  In combination with sulfolane forms gel electrolyte for Forms proton conducting hybrid organic-inorganic pcr. 1. Stathatos, E. et al. Adv. Funct. Mater. 2004, 14, 4,	ure/water HMIS: 2-2-1-X  ure/water HMIS: 3-2-1-X  ure, water, protic solve HMIS: 3-1-1-X  ded hydrophobicity f ure, water, protic solve HMIS: 3-1-1-X	284.38  583.40  597.42  or chromatographents  1,000 - 1,200	145 / 0.2  25g \$72.00  190-200 / 0.4  10g \$124.00  220-2 / 0.9	1.158  1.135  1.088  Antifog coatings can be formed from combinations of polyalkylene oxide functional silanes and film-forming	

	name		MW	bp/mm (mp)	<b>D</b> 4 ²⁰	$n_D^{20}$
CH ₂ CH ₂ O) ₂₅₋₃₀	SIB1824.84		1 400 1 600	(00.46	·	
CH ₂	BIS(3-TRIETHOXYSILYLPROPYL)POLYETHYLENE- OXIDE (25-30 EO)		1,400 - 1,600	(38-42	2)	
CH ₂	Hydrolytically stable hydrophilic silane					
CH ₂	See also SIB1860.0					
$_2H_5)_3$ Si(OC ₂ H ₅ ) ₃	HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	oisture/water				
	,	HMIS: 2-1-1-X		25g \$84.00		
	SIB1827.0					
	BIS[3-(TRIETHOXYSILYL)PROPYL]THIOUREA, 90%		484.73		1.047	1.4696
	$C_{19}H_{44}N_2O_6SSi_2$		Flashpoint: >	110°C (>230°F)		
н	Viscous yellow liquid					
$_{3}$ SiCH ₂ CH ₂ CH ₂ - 1	Forms films on electrodes for determination of m					
/2	1. Guo, Y. et al. J. Pharm. Biol. Anal. 1999, 19 1	75.				
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	oisture/water				
	[69952-89-2]	HMIS: 2-1-1-X		25g \$134.00		
	SIB1828.0					
	BIS[3-(TRIETHOXYSILYL)PROPYL]UREA, 60% in et	hanol	468.73		0.923	
Н	$C_{19}H_{44}N_2O_7Si_2$		Flashpoint: 24	4°C (75°F)		
$CH_2CH_2CH_2 \cdot N)_2 - C =$	See also SIB1835.5, SIU9055.0					
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo					
	[69465-84-5]	HMIS: 2-1-1-X		25g \$34.00	100g \$110.00	
	SIB1835.5					
	BIS(TRIMETHOXYSILYLPROPYL)UREA, 95%		384.58		1.10	1.449
н-сн-сн- н - —	C ₁₃ H ₃₂ N ₂ O ₇ Si ₂ Amber liquid		Flashpoint: >	110°C (>230°F)		
H ₂ CH ₂ CH ₂ -NT-C=	Viscosity: 100 - 250 cSt					
12	Adhesion promoter for 2-part condensation cure					
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo			05 4	400 005 00	
	[18418-53-6] TSCA	HMIS: 3-2-1-X		25g \$20.00	100g \$65.00	2kg \$368.0
	SIC2065.0					
$CH_3$	10-(CARBOMETHOXY)DECYLDIMETHYLCHLORO-		292.92	133 / 0.3	0.950	1.4483 ²⁵
C(CH ₂ ) ₁₀ Si -Cl	SILANE		Flashpoint: 10	05°C (221°F)		
CH ₃	C ₁₄ H ₂₉ CIO ₂ Si					
	Long chain organofunctional silane					
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mo		olvents	40. 4	50 040000	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with m [53749-38-5]	oisture, water, protic so HMIS: 3-1-1-X	olvents	10g \$42.00	50g \$168.00	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with m [53749-38-5] SIC2067.0	HMIS: 3-1-1-X		•		
ÇH₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with m [53749-38-5] SIC2067.0 10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY	HMIS: 3-1-1-X	olvents 288.50	10g \$42.00 130 / 0.3	50g \$168.00 0.903	1.4399
СН ₃ (СН ₂ ) ₁₀ Si — ОСН ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5] SIC2067.0 10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE	HMIS: 3-1-1-X		•		1.4399
harry A. S. H. S. Salara and	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me $[53749-38-5]$ SIC2067.0 10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE $C_{15}H_{32}O_3Si$	HMIS: 3-1-1-X		•		1.4399
(CH ₂ ) ₁₀ Si - OCH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane	HMIS: 3-1-1-X		•		1.4399
(CH ₂ ) ₁₀ Si - OCH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me $[53749-38-5]$ SIC2067.0 10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE $C_{15}H_{32}O_3Si$	HMIS: 3-1-1-X		130 / 0.3	0.903	1.4399
(CH ₂ ) ₁₀ Si - OCH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	HMIS: 3-1-1-X		•		1.4399
(CH ₂ ) ₁₀ Si - OCH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	HMIS: 3-1-1-X	288.50	130 / 0.3 10g \$51.00	0.903 50g \$204.00	1.4399
(CH ₂ ) ₁₀ Si — OCH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	HMIS: 3-1-1-X		130 / 0.3	0.903	1.4399
(CH ₂ ) ₁₀ Si — OCH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ C ₁₃ O ₂ Si	HMIS: 3-1-1-X /- pisture/water HMIS: 2-1-1-X	288.50	130 / 0.3 10g \$51.00	0.903 50g \$204.00	1.4399
(CH ₂ ) ₁₀ Si — OCH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	HMIS: 3-1-1-X  /-  pisture/water HMIS: 2-1-1-X	288.50	130 / 0.3 10g \$51.00 133-6 / 0.3	0.903 50g \$204.00	1.4399
(CH ₂ ) ₁₀ Si — OCH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]	HMIS: 3-1-1-X /- pisture/water HMIS: 2-1-1-X	288.50	130 / 0.3 10g \$51.00	0.903 50g \$204.00	1.4399
(CH ₂ ) ₁₀ Si — OCH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0	HMIS: 3-1-1-X  /-  pisture/water HMIS: 2-1-1-X	288.50 333.75	130 / 0.3 10g \$51.00 133-6 / 0.3 10g \$82.00	0.903 50g \$204.00 1.10	
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si — CI CI CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO-	HMIS: 3-1-1-X  /-  pisture/water HMIS: 2-1-1-X	288.50 333.75 201.12	130 / 0.3 10g \$51.00 133-6 / 0.3 10g \$82.00	0.903 50g \$204.00	1.4399 1.4439 ²⁵
(CH ₂ ) ₁₀ Si — OCH ₃ CH ₃	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLOROSILANE, tech-96	HMIS: 3-1-1-X  /-  Disture/water HMIS: 2-1-1-X  Disture/water HMIS: 3-2-1-X	288.50 333.75 201.12 Flashpoint: 52	130 / 0.3 10g \$51.00 133-6 / 0.3 10g \$82.00 98-9 / 25 2°C (126°F)	0.903 50g \$204.00 1.10	
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si — CI CI CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C ₅ H ₁₀ Cl ₂ O ₂ Si	HMIS: 3-1-1-X  /-  Disture/water HMIS: 2-1-1-X  Disture/water HMIS: 3-2-1-X  Contains ~ 20% 1	288.50  333.75  201.12 Flashpoint: 52	130 / 0.3 10g \$51.00 133-6 / 0.3 10g \$82.00	0.903 50g \$204.00 1.10	
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si — CI CI CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	HMIS: 3-1-1-X  /-  pisture/water HMIS: 2-1-1-X  pisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so	288.50  333.75  201.12 Flashpoint: 52	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25 2°C (126°F) ethylmethyldichlorosilane isor	0.903 50g \$204.00 1.10	
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si — CI CI CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C15H32O3Si    Long chain organofunctional silane    HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C12H23Cl3O2Si    HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C5H10Cl2O2Si    HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18163-42-3]  TSCA	HMIS: 3-1-1-X  /-  Disture/water HMIS: 2-1-1-X  Disture/water HMIS: 3-2-1-X  Contains ~ 20% 1	288.50  333.75  201.12 Flashpoint: 52	130 / 0.3 10g \$51.00 133-6 / 0.3 10g \$82.00 98-9 / 25 2°C (126°F)	0.903 50g \$204.00 1.10	
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si — CI CI CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C15H32O3Si    Long chain organofunctional silane    HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo	HMIS: 3-1-1-X  /-  pisture/water HMIS: 2-1-1-X  pisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy)	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25 2°C (126°F) ethylmethyldichlorosilane isor	0.903 50g \$204.00 1.10 1.187 ²⁵	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si – CI CI CI CI CI CI CH ₂ CH ₂ Si – CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C15H32O3Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [10-10]  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C12H23Cl3O2Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C5H10Cl2O2Si  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mo [18163-42-3]  TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE	HMIS: 3-1-1-X  /-  pisture/water HMIS: 2-1-1-X  pisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00	0.903 50g \$204.00 1.10	
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si — CI CI CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C ₅ H ₁₀ Cl ₂ O ₂ Si  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18163-42-3]  TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE  METHYL (3-TRICHLOROSILYLPROPIONATE)	hMIS: 3-1-1-X  poisture/water HMIS: 2-1-1-X  poisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25 2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F)	0.903 50g \$204.00 1.10 1.187 ²⁵	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si – CI CI CI CI CI CI CH ₂ CH ₂ Si – CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C ₅ H ₁₀ Cl ₂ O ₂ Si  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18163-42-3]  TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE  METHYL (3-TRICHLOROSILYLPROPIONATE)  C ₄ H ₇ Cl ₃ O ₂ Si  tech-95	hMIS: 3-1-1-X  /-  bisture/water HMIS: 2-1-1-X  bisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00	0.903 50g \$204.00 1.10 1.187 ²⁵	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si – CI CI CI CI CI CI CH ₂ CH ₂ Si – CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si Long chain organofunctional silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C ₅ H ₁₀ Cl ₂ O ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18163-42-3] TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE  METHYL (3-TRICHLOROSILYLPROPIONATE)  C ₄ H ₇ Cl ₃ O ₂ Si tech-95 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me	hMIS: 3-1-1-X  /-  bisture/water HMIS: 2-1-1-X  bisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F) ethyltrichlorosilane isomer	0.903 50g \$204.00 1.10 1.187 ²⁵ ner	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si – CI CI CI CI CI CI CH ₂ CH ₂ Si – CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si Long chain organofunctional silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96 C ₅ H ₁₀ Cl ₂ O ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18163-42-3] TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE  METHYL (3-TRICHLOROSILYLPROPIONATE) C ₄ H ₇ Cl ₃ O ₂ Si tech-95 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18147-81-4] TSCA EC 242-036-1	hMIS: 3-1-1-X  /-  bisture/water HMIS: 2-1-1-X  bisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25 2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F)	0.903 50g \$204.00 1.10 1.187 ²⁵	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si – CI CI CI CI CI CI CH ₂ CH ₂ Si – CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si  Long chain organofunctional silane  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C ₅ H ₁₀ Cl ₂ O ₂ Si  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18163-42-3]  TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE  METHYL (3-TRICHLOROSILYLPROPIONATE)  C ₄ H ₇ Cl ₃ O ₂ Si  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18147-81-4]  TSCA  EC 242-036-1  SIC2072.0	hMIS: 3-1-1-X  /-  bisture/water HMIS: 2-1-1-X  bisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a I-(carbomethoxy) olvents	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F) ethyltrichlorosilane isomer	0.903 50g \$204.00 1.10 1.187 ²⁵ ner 1.325	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI CH ₂ CH ₂ Si — CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si Long chain organofunctional silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE C ₁₂ H ₂₃ Cl ₃ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96 C ₅ H ₁₀ Cl ₂ O ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18163-42-3] TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE METHYL (3-TRICHLOROSILYLPROPIONATE) C ₄ H ₇ Cl ₃ O ₂ Si tech-95 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18147-81-4] TSCA EC 242-036-1  SIC2072.0  2-(CARBOMETHOXY)ETHYLTRIMETHOXYSILANE	hMIS: 3-1-1-X  /-  bisture/water HMIS: 2-1-1-X  bisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F) ethyltrichlorosilane isomer	0.903 50g \$204.00 1.10 1.187 ²⁵ ner	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI C(CH ₂ ) ₁₀ Si – CI CI CI CI CI CI CH ₂ CH ₂ Si – CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si Long chain organofunctional silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE C ₁₂ H ₂₃ Cl ₃ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96 C ₅ H ₁₀ Cl ₂ O ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18163-42-3] TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE METHYL (3-TRICHLOROSILYLPROPIONATE) C ₄ H ₇ Cl ₃ O ₂ Si tech-95 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18147-81-4] TSCA EC 242-036-1  SIC2072.0  2-(CARBOMETHOXY)ETHYLTRIMETHOXYSILANE METHYL (3-TRIMETHOXYSILYLPROPIONATE)	hMIS: 3-1-1-X  poisture/water HMIS: 2-1-1-X  poisture/water HMIS: 3-2-1-X  Contains ~ 20% 1  poisture, water, protic so HMIS: 3-2-1-X  Contains ~ 20% 1  poisture, water, protic so HMIS: 3-3-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a I-(carbomethoxy) olvents	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F) ethyltrichlorosilane isomer 25g \$39.00  75 / 1.5 43°C (>110°F)	0.903 50g \$204.00 1.10 1.187 ²⁵ ner 1.325	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI CH ₂ CH ₂ Si — CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si Long chain organofunctional silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE  C ₁₂ H ₂₃ Cl ₃ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96  C ₅ H ₁₀ Cl ₂ O ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18163-42-3] TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE  METHYL (3-TRICHLOROSILYLPROPIONATE)  C ₄ H ₇ Cl ₃ O ₂ Si tech-95 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me  [18147-81-4] TSCA EC 242-036-1  SIC2072.0  2-(CARBOMETHOXY)ETHYLTRIMETHOXYSILANE  METHYL (3-TRIMETHOXYSILYLPROPIONATE)  C ₇ H ₁₆ O ₅ Si tech-95	hMIS: 3-1-1-X  poisture/water HMIS: 2-1-1-X  contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-3-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a I-(carbomethoxy) olvents	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F) ethyltrichlorosilane isomer 25g \$39.00  75 / 1.5	0.903 50g \$204.00 1.10 1.187 ²⁵ ner 1.325	1.4439 ²⁵
CH ₂ ) ₁₀ Si — OCH ₃ CH ₃ CH ₃ CI CH ₂ CH ₂ Si — CH ₃ CI	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [53749-38-5]  SIC2067.0  10-(CARBOMETHOXY)DECYLDIMETHYLMETHOXY SILANE  C ₁₅ H ₃₂ O ₃ Si Long chain organofunctional silane HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo  SIC2067.6  10-(CARBOMETHOXY)DECYLTRICHLOROSILANE C ₁₂ H ₂₃ Cl ₃ O ₂ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with mo [4211-29-4]  SIC2068.0  2-(CARBOMETHOXY)ETHYLMETHYLDICHLORO- SILANE, tech-96 C ₅ H ₁₀ Cl ₂ O ₂ Si HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18163-42-3] TSCA  SIC2070.0  2-(CARBOMETHOXY)ETHYLTRICHLOROSILANE METHYL (3-TRICHLOROSILYLPROPIONATE) C ₄ H ₇ Cl ₃ O ₂ Si tech-95 HYDROLYTIC SENSITIVITY: 8: reacts rapidly with me [18147-81-4] TSCA EC 242-036-1  SIC2072.0  2-(CARBOMETHOXY)ETHYLTRIMETHOXYSILANE METHYL (3-TRIMETHOXYSILYLPROPIONATE)	hMIS: 3-1-1-X  poisture/water HMIS: 2-1-1-X  contains ~ 20% 1  oisture, water, protic so HMIS: 3-2-1-X  Contains ~ 20% 1  oisture, water, protic so HMIS: 3-3-1-X	288.50  333.75  201.12 Flashpoint: 52 I-(carbomethoxy) olvents  221.54 Flashpoint: >a I-(carbomethoxy) olvents	130 / 0.3  10g \$51.00  133-6 / 0.3  10g \$82.00  98-9 / 25  2°C (126°F) ethylmethyldichlorosilane isor 25g \$80.00  90-2 / 25 43°C (>110°F) ethyltrichlorosilane isomer 25g \$39.00  75 / 1.5 43°C (>110°F)	0.903 50g \$204.00 1.10 1.187 ²⁵ ner 1.325	1.4439 ²⁵

	name		MW	bp/mm (mp)	<b>D</b> 4 ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
$C_8H_{17}$ O $II$ NH(CH ₂ ) ₃ Si(OC ₂ H ₅ ) ₃ $C_8H_{17}$	$\begin{tabular}{ll} SID4465.0 \\ N,N-DIOCTYL-N'-TRIETHOXYSILYLPROPYLUREA \\ C_{26}H_{56}N_2O_4Si \\ Forms hydrophobic phases with embedded hydrop Forms organic-inorganic vesicles (cerasomers). \end{tabular}$	hilicity	488.83		0.924 ²⁵	1.4521 ²⁵
	Hashizume, M. et al. J. Thin Solid Films 2003, 4     HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist     [259727-10-1]			25g \$88.00		
\ \ \	SID4472.0  4,7-DIOXAOCTADECYLTRICHLOROSILANE, 95%  C ₁₆ H ₃₅ Cl ₃ O ₂ Si  Forms C ₁₈ bonded phases with embedded hydroph	nilicity	391.88	165 / 0.7	1.028	
) a ^{/i} a	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist	•		10g \$185.00		
CH ₃ OCH ₂ CH ₂ O(CH ₂ ) ₁₁ SiCl ₃	$\begin{split} & \text{SIM6491.5} \\ & \text{METHOXYETHOXYUNDECYLTRICHLOROSILANE} \\ & \text{C}_{14}\text{H}_{29}\text{CI}_3\text{O}_2\text{Si} \\ & \text{Forms self-assembled monolayers with "hydrophillications"} \end{split}$	c tips"	363.83	145-9 / 1.25	1.07	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mois [943349-49-3]	ture, water, protic solv HMIS: 3-2-1-X	ents	5g \$82.00		
$_{1}^{\mathrm{CH}_{\bar{3}}}$	SIM6492.58 2-[METHOXYPOLY(ETHYLENOXY) ₆₋₉ PROPYL]-		427-559			
CH ₃ O-(CH ₂ CH ₂ O) (CH ₂ ) ₃ Si -OCH ₃ CH ₃	DIMETHYLMETHOXYSILANE $CH_3O(C_2H_4O)_{6:9}(CH_2)_3(CH_3)_2Si(OCH_3)\\ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist$	ture/water HMIS: 2-2-1-X		5g \$110.00		
CH ₃ O=(CH ₂ CH ₂ O) ₆₋₉ =(CH ₂ ) ₃ Si	SIM6492.66 2-[METHOXY(POLYETHYLENEOXY)PROPYL]- TRICHLOROSILANE, tech-90 CH ₃ O(C ₂ H ₄ O) ₆₋₉ (CH ₂ ) ₃ Cl ₃ Si		472-604	-	1.13	
	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mois [36493-41-1] TSCA	ture, water, protic solv HMIS: 3-2-1-X	ents	10g \$76.00		
CH ₃ O=(CH ₂ CH ₂ O) ₆₋₉ (CH ₂ ) ₃ Si(OCF	Forms charge neutral coatings on CdSe quantum of 1. Parak, W. et al. <i>Chem. Mater.</i> <b>2002</b> , <i>14</i> , 2113.	dots which conujuga	459-591 Flashpoint: 88°0 Viscosity: 29 cS te DNA. ¹		1.076	1.403
	See also SIB1824.84, SIH6188.0 HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [65994-07-2] TSCA	ture/water HMIS: 2-2-1-X		25g \$76.00	100g \$247.00	
CH ₃ O (CH ₂ CH ₂ O) ₉₋₁₂ (CH ₂ ) ₃ Si(OCH ₃	SIM6492.72 2-[METHOXY(POLYETHYLENEOXY)PROPYL]-	111110. L L 1 7	591-719 Flashpoint: 88°0	-	1.071	1.451 ²⁵
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist [65994-07-2] TSCA SIM6492.73 2-[METHOXY(POLYETHYLENEOXY)PROPYL]	ture/water HMIS: 2-2-1-X	900-1,200	25g \$76.00	100g \$247.00	
CH ₃ O ₁ (CH ₂ CH ₂ O) ₂₁₋₂₄ (CH ₂ ) ₃ Si(OCH ₃ )	TRIMETHOXYSILANE, tech-90  CH ₃ O(CH ₂ CH ₂ O) ₂₁₋₄ (CH ₂ ) ₃ Si(OCH ₃ ) ₃ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moist		300 1,200			
	[65994-07-2]	HMIS: 2-2-1-X		1.0g \$84.00		

# Hydrophilic Silane Properties Hydroxylic

	name		MW b	p/mm (mp)	D ₄ ²⁰	<b>n</b> _D ²⁰
сн, 0=0 Сосн,сн,сн,sкос,н,			377.51		0.872	
10	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi	sture/water HMIS: 2-3-0-X		5g \$180.00		
och _z ch _z och _z ch _z chzch _z chzkoe	Employed in surface modification for preparation	XY- silane of oligonucleotide arra	309.48 Flashpoint: 24°C (75°F, Specific wetting surface	)	0.92	1.4090 ²⁵
	McGall, G. et al. <i>Proc. Natl. Acad. Sci.</i> <b>1996</b> , 93     HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi     [7538-44-5] TSCA EC 231-408-9			25g \$30.00	100g \$98.00	
ř	SIB1142.0	1 IIVIIO. 3-4-0-X		209 \$30.00	100g ψ30.00	
N-CH ₂	N,N'-BIS(HYDROXYETHYL)-N,N'-BIS(TRIMETHOXY-SILYLPROPYL)ETHYLENEDIAMINE, 66-68% in metha	anol	472.73		0.98	
(CH ₃ O) ₃ Si(CH ₂ ) ₃	C ₁₈ H ₄₄ N ₂ O ₈ Si ₂ HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi	oturo/wator	Flashpoint: 11°C (52°F)			
4.2	[214362-07-9]	HMIS: 3-4-1-X		25g \$66.00		
ociticitotcifcitos citicitos citicit	SIB1824.2 BIS-[3-(TRIETHOXYSILYLPROPOXY)-2-HYDROXY-PROPOXY]POLYETHLYENE OXIDE, 65% in ethanol C ₂₄ H ₃₆ O ₁₁ Si ₂ (C ₃ H ₄ O) ₃₈	ah va luqtar	800 - 900 Flashpoint: 24°C (75°F)	)	0.959	1.421
ancara reasonsi	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi	HMIS: 2-4-1-X		25g \$74.00		
	SIB1824.4 2,2-BIS(3-TRIETHOXYSILYLPROPOXYMETHYL)- BUTANOL, 50% in ethanol		542.86		0.899	
CH-OCH-CH-CH-SHOC-H-9	C ₂₄ H ₅₄ O ₉ Si ₂ For solid-state synthesis of oligonucleotides	LIMIC: 2 4 1 V		100 6146 00		
	[862911-98-6] SIH6172.0	HMIS: 2-4-1-X		10g \$146.00		
OCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SROCH ₃ h ₁	N-(HYDROXYETHYL)-N-METHYLAMINOPROPYL- TRIMETHOXYSILANE, 75% in methanol C ₉ H ₂₉ NO ₄ Si		237.37 Flashpoint: 16°C (61°F)	)	0.99	1.417
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi [330457-46-0]	sture/water HMIS: 3-4-1-X		25g \$55.00	100g \$179.00	
ОС2И3 НО•СИ2−\$(=ОС2И3 ОС2И3	SIH6175.0 HYDROXYMETHYLTRIETHOXYSILANE, 50% in ethan TRIETHOXYSILYLMETHANOL C ₇ H ₁₈ O ₄ Si	nol	194.31		0.866	
OC2H3 + OC2H3 OCCH2-\$(-O-CH2-\$(-OC2H3 OC2H3 + OC2H3	Contains equilibrium condensation oligomers Hydrolysis yields analogs of silica-hydroxymethyls 1. Arkles, B. US Patent 5,371,262, 1994. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi					
	[162781-73-9]	HMIS: 2-4-0-X		25g \$96.00		
OC ₂ H ₃ IO (CH ₂ CH ₂ O) ₈₋₁₂ (CH ₂ ) ₅ Si — OC ₂ H ₃ OC ₃ H ₃	SIH6188.0 [HYDROXY(POLYETHYLENEOXY)PROPYL]- TRIETHOXYSILANE, (8-12 EO), 50% in ethanol HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi	sture/water	575-750		0.889	1.401
		HMIS: 2-4-1-X		25g \$88.00		
C−NIRCH ₂₀ SROC ₃ H ₄ h H0− H H− OH H− OH	SIT8189.0 N-(3-TRIETHOXYSILYLPROPYL)GLUCONAMIDE C ₁₅ H ₃₃ NO ₉ Si 50% in ethanol Water soluble, hydrophilic silane HYDROLYTIC SENSITIVITY: 8: reacts rapidly with mo	isture water protic solv	399.51 Flashpoint: 8°C (46°F)		0.951	
ču _ž ou.	[104275-58-3] SIT8189.5	HMIS: 2-4-1-X		25g \$28.00	100g \$91.00	
g.	N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXY- BUTYRAMIDE C ₁₃ H ₂₉ NO ₅ Si		307.47		1.02	1.4533
ti Dentiententekentententekoetikol	Anchoring reagent for light directed synthesis of E 1. McGall, G. et al. <i>J. Am. Chem. Soc.</i> <b>1997</b> , <i>119</i> , HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi	5081.				
	[156214-80-1]	HMIS: 2-2-1-X		10g \$31.00	50g \$124.00	
	SIT8192.0		400 500		4.00	1 4540 25
g ROCH ² CH ³ )7 ⁴ OCNICH ² CH ³ CH ² (C ² H ² O) ² Si , CH ²	N-(TRIETHOXYSILYLPROPYL)-O-POLYETHYLENE - OXIDE URETHANE, 95% C₁₀H₂₂NO₄SiO(CH₂CH₂O)₄₅H Hydrophilic surface modifier Forms PEGylated glass surfaces suitable for capi 1. Razunguzwa, T. et al. Anal. Chem. 2006, 78, 4		St		1.09	1.4540 ²⁵
	See also SIB1824.82 HYDROLYTIC SENSITIVITY: 7: reacts slowly with moi	sture/water				
					100g \$52.00	2kg \$728.00

## **Hydrophilic Silane Properties**

## Ionic-Charge Inducible

	name	MW	bp/mm (mp)	<b>D</b> 4 ²⁰	$n_{\scriptscriptstyle D}^{\scriptscriptstyle \; 20}$			
CI T	(2-N-BENZYLAMINOETHYL)-3-AMINOPROPYL- TRIMETHOXYSILANE hydrochloride, 90% C ₁₅ H ₂₈ N ₂ O ₃ Si·HCI 50% in methanol	348.95 Flashpoint: 9	°C (48°F)	0.942	1.4104			
CH ₂ NH(CH ₂ ) ₂ N̈ _H ₂ (CH ₂ ) ₅ Si(OCH ₃ ) ₅	Amber liquid HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [623938-90-9] TSCA HMIS: 3-3-1-X		25g \$16.00	100g \$52.00				
	SIB1500.0							
CH ₂ CH ₂ OCH ₃ Cl ⁻ +HN CH ₂ CH ₂ CH ₂ Si(OCH ₃ ) ₃	BIS(METHOXYETHYL)-3-TRIMETHOXYSILYLPROPYL- AMMONIUM CHLORIDE, 60% in methanol C ₁₇ H ₂₈ NO ₈ Si·HCI	331.91 Flashpoint: 1	1°C (52°F)					
CH ₂ CH ₂ OCH ₃	Hydrophilic ammoniun salt; forms anti-fog surface films HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water HMIS: 3-4-1-X		25g \$48.00					
	SIB1835.0		=09 ψ+0.00					
(CH ₃ O) ₃ SiCH ₂ CH ₂ CH ₂ N=CH ₃	$\begin{aligned} & \text{BIS}(3\text{-TRIMETHOXYSILYLPROPYL})\text{-N-METHYLAMINE} \\ & \text{$C_{13}$H}_{33}\text{NO}_6\text{Si}_2 \end{aligned}$	355.58 Flashpoint: 1	175 / 10 06°C (223°F)	1.023	1.430			
(CH ₃ O) ₃ SiCH ₂ CH ₂ CH ₂	See also SIB1828.0 HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [31024-70-1] HMIS: 2-1-0-X		25g \$68.00	100g \$221.00				
	SIC2263.0		9 φοσ.σσ	g +==				
р Р	CARBOXYETHYLSILANETRIOL, SODIUM SALT $C_3H_6Na_2O_5Si$ 25% in water	196.14		1.170 25				
Na [†] OCCH ₂ CH ₂ Si — O Na [†] OH	pH: 12 - 12.5 In combination w/ aminofunctional silanes forms amphoteric silicas. ¹ 1. Han, L. et al. <i>Chem. Mater.</i> <b>2007</b> , <i>19</i> , 2860.							
	HYDROLYTIC SENSITIVITY: 0: forms stable aqueous solutions [18191-40-7] HMIS: 2-0-0-X		25g \$45.00	100g \$146.00				
	SIC2415.0		20g \$40.00	100g ψ140.00				
CISO ₂ —CH ₂ CH ₂ SiCl ₁	2-(4-CHLOROSULFONYLPHENYL)ETHYLTRICHLORO- SILANE, 50% in methylene chloride	338.11		1.37				
olid Phase Extraction SPE) columns with enzenesulfonic acid unctional-	C ₈ H ₆ Cl ₄ O ₂ SSi  Contains 30% free sulfonic acid and small amounts of silyIsulfonic acid  Employed in preparation of solid phase extraction columns  HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sol							
red silica	[79793-00-3] TSCA EC 279-267-2 HMIS: 4-2-2-X		25g \$48.00	100g \$156.00				
re utilized o analyze rrine	SIC2415.4 2-(4-CHLOROSULFONYLPHENYL)ETHYLTRICHLORO- SILANE, 50% in toluene	338.11		1.08				
amples for mino acids	C ₈ H ₈ Cl ₄ O ₂ SSi  Contains 30% free sulfonic acid and small amounts of silyIsulfonic acid condensation products  See also SIB1811.7							
and drugs of abuse.	HYDROLYTIC SENSITIVITY: 8: reacts rapidly with moisture, water, protic sol	vents						
, abaoo.	[79793-00-3] TSCA EC 279-267-2 HMIS: 4-4-2-X		25g \$52.00	100g \$169.00				
	SIC2417.0 2-(4-CHLOROSULFONYLPHENYL)ETHYLTRIMETHOXY- SILANE, 50% in methylene chloride	324.85		1.30 25				
	C ₁₁ H ₁₇ CIO₅SSi Amber color Contains free sulfonic acid							
CH ₂ CH ₂ Si(OCH ₃ ) ₃	Treated silica acts as etherification catalyst. ¹ Reagent for surface initiated ATRP. ²							
	Employed in mesostructured fuel-cell membranes. ³ 1. Sow, B. et al. <i>Microporous and Mesoporous Mat'ls.</i> <b>2005</b> , 79, 129. 2. Fukuda, J. et al. <i>Macromolecules</i> <b>2000</b> , 33, 2870.							
	3. Pereira, F. et al. Chem. Mater. 2008, 20, 1710.							
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [126519-89-9] HMIS: 3-2-1-X		25g \$72.00	100g \$234.00				
	SID3392.0		<u> </u>					
CH ₃ (CH ₂ ) ₉ \ + CH ₃ Cl-	N,N-DIDECYL-N-METHYL-N-(3-TRIMETHOXYSILYL- PROPYL)AMMONIUM CHLORIDE, 40-42% in methanol C ₂₇ H ₈₀ CINO ₃ Si	510.32 Flashpoint: 1	3°C (55°F)	0.863	1.4085			
CH ₃ (CH ₂ ) ₉ CH ₃ CH CH ₂ CH ₂ CH ₂ Si(OCH ₃ ) ₃	Contains 3-5% CI(CH ₂ ) ₃ Si(OMe) ₃ In combination with TEOS forms high pore volume xerogels w/ adsopt 1. Markovitz, M. et al. <i>Langmuir</i> <b>2001</b> , <i>17</i> , 7085.	ive capacity.1						
	HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water							

	name				MW	bp/mm (m	p) D ₄ ²	$n_D^{20}$
OCH₂CH₃	SID3395.4 (DIETHYLAMINO	OMETHYL)TRI	ETHOXYSILANE		249.43	74-6 / 3	0.9336 25	1.4142 ²⁵
NCH ₂ Si-OCH ₂ CH ₃ OCH ₂ CH ₃	C ₁₁ H ₂₇ NO ₃ Si Catalyst for	neutral cure 1	-part RTVs					
	[15180-47-9]	IC SENSITIVITY TSCA-L	∕: 7: reacts slowly with m	noisture/water HMIS: 2-2-1-X		25g \$49.00		
	SID3395.6	MINOMETHVI	.)TRIMETHOXYSILAN	NE.	207.40			
H ₃ CH ₂	C ₈ H ₂₁ NO ₃ Si	VIIIVOIVILITITE	JIMINETHORTOLA	<b>V</b> L	207.40			
NCH ₂ Si(OCH ₃ ) ₃	Charge con Crosslinker		oner particles cure silicone RTVs ': 7: reacts slowly with m	noisture/water				
	[67475-66-5]	TSCA-L	,	HMIS: 3-2-1-X		25g \$48.00		
	SID3396.0					-		
CH ₂	(N,N-DIETHYL-3- C ₁₀ H ₂₅ NO ₃ Si	-AMINOPROP	PYL)TRIMETHOXYSIL	LANE	235.40 Flashpoint: 10	120 / 20 00°C (212°F)	0.934	1.425
CH ₂ CH ₂ CH ₂ CH ₂ Si(OCH ₃ ) ₃	1. Mutukura	a, K. et al. Che	catalyst for 1,4-additionEur. J. 2009, 15, 1	0871.				
	[41051-80-3]	TSCA	': 7: reacts slowly with m EC 255-192-0	HMIS: 2-1-1-X		25g \$62.00	100g \$202.00	
	SIO6620.0		20 200 102-0			<b>-</b> ∪g ψ0∠.00	. υυσ ψευε.υυ	
		NETHVI (3-TD	IMETHOXYSILYL-		496.29		0.89	
		`	IDE, 60% in methanol	ı	496.29 Flashpoint: 15	5°C (59°F)	0.89	
	C ₂₆ H ₅₈ CINO ₃ Si		ontains 3-5% $CI(CH_2)$			emperature: 230°C		
CI_CH ₃	Orients liqui		5/1tail13 5-570 Oi(O112);	301(01110)3	Autoignition to	imperature. 200 0		
$H_2)_{17} - N - (CH_2)_3 Si(OCH_3)_3$		as a glass lubri	icant					
CH ₃		n antistatic surf						
			t for high density magi	netic recording media	.1			
			ble antimicrobial repor					
			lly Modified Oxide Sur		Ed : Gordon & B	reach: 1000: n 305		
			nes, Surfaces & Interfa					
				aces, Leyden, D., Ed.,	GOIDOII & BIEACI	11. 1900, p. 107.		
		03392.0, SIO660						
			7: 7: reacts slowly with m			25- 040.00	Ol-= (COOO OO	
	[27668-52-6]	TSCA	EC 248-595-8	HMIS: 3-4-0-X		25g \$18.00	2kg \$280.00	
	SIP6926.2							
		HYL)THIOPR	OPYLTRIMETHOXY-		301.48	156-7 / 0.25	1.089	1.498
OCH3	SILANE							
CH ₂ CH ₂ S(CH ₂ ) ₃ Si – OCH ₃								
OCH ₃		.C SENSITIVITY	7: 7: reacts slowly with m					
	[29098-72-4]			HMIS: 3-2-1-X		10g \$118.00		
QCHy	SIP6926.4							
CH_CH_S(CH_),S(+0CH_)	2-(4-PYRIDYLET	HYL)THIOPR	OPYLTRIMETHOXY-		301.48	160-2 / 0.2	1.09	1.5037
-000	SILANE							
	C ₁₃ H ₂₃ NO ₃ SSi							
	C ₁₃ H ₂₃ NO ₃ SSi pKa: 4.8							
N	pKa: 4.8	ole ligand for in	mmunoglobulin lgG se	eparation using hydrop	phobic charge indu	uction chromatography (HC	CIC)	
N	pKa: 4.8 Immobilizab	-	mmunoglobulin lgG se		phobic charge indu	uction chromatography (HC	CIC)	
N N	pKa: 4.8 Immobilizab	-			phobic charge indu	uction chromatography (HC	CIC)	
N N	pKa: 4.8 Immobilizab HYDROLYTI	-		noisture/water	phobic charge indu		CIC)	
CH2-CH2-Si(OCH2CH3)3	pKa: 4.8 Immobilizab HYDROLYTI( [198567-47-4] SIP6928.0	IC SENSITIVITY	7: 7: reacts slowly with m	noisture/water		10g \$124.00		1 4624 24
N N	pKa: 4.8 Immobilizab HYDROLYTI( [198567-47-4] SIP6928.0 2-(4-PYRIDYLET	IC SENSITIVITY	7: 7: reacts slowly with m	noisture/water	phobic charge indu		1.00	1.4624 ²⁴
N. W.	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si	IC SENSITIVITY	7: 7: reacts slowly with m OXYSILANE Amber liquid	noisture/water HMIS: 3-2-1-X	269.43	10g \$124.00		1.4624 ²⁴
N. W.	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₉ H ₂₉ NO ₃ Si Forms self-a	IC SENSITIVITY  THYL)TRIETHO  assembled lay	7: 7: reacts slowly with m  OXYSILANE  Amber liquid  rers which can be "nar	noisture/water HMIS: 3-2-1-X	269.43	10g \$124.00		1.4624 ²⁴
N N	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L. (	IC SENSITIVITY  ITHYL)TRIETHO  assembled lay et al. Mater. Le	7: 7: reacts slowly with m OXYSILANE Amber liquid	noisture/water HMIS: 3-2-1-X	269.43	10g \$124.00		1.4624 ²⁴
N. W.	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₈ NO ₃ Si Forms self- 1. Rosa, L. G See also SIP	THYL)TRIETHO assembled lay et al. Mater. Le	OXYSILANE Amber liquid ers which can be "narett.2009, 63, 961.	noisture/water HMIS: 3-2-1-X	269.43	10g \$124.00		1.4624 ²⁴
N	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₈ NO ₃ Si Forms self-c 1. Rosa, L. G See also SIP HYDROLYTII	THYL)TRIETHO assembled lay et al. Mater. Le	7: 7: reacts slowly with m  OXYSILANE  Amber liquid  rers which can be "nar	noisture/water HMIS: 3-2-1-X no-shaved" by scannin	269.43	10g \$124.00 105 / 0.9		1.4624 ²⁴
N	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L. o See also SIP HYDROLYTII [98299-74-2]	THYL)TRIETHO assembled lay et al. Mater. Le	OXYSILANE Amber liquid ers which can be "narett.2009, 63, 961.	noisture/water HMIS: 3-2-1-X	269.43	10g \$124.00		1.4624 ²⁴
N N	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L. ( See also SIP HYDROLYTII [98299-74-2] SIP6930.0	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  26930.0 IC SENSITIVITY	CXYSILANE Amber liquid vers which can be "narett.2009, 63, 961. Cartesta slowly with m	noisture/water HMIS: 3-2-1-X no-shaved" by scannin	269.43 ng AFM. ¹	10g \$124.00 105 / 0.9 10g \$119.00	1.00	
N N	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L See also SIP HYDROLYTII [98299-74-2] SIP6930.0 2-(2-PYRIDYLET	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  26930.0 IC SENSITIVITY	CY: reacts slowly with m  OXYSILANE    Amber liquid  ers which can be "nar  ett.2009, 63, 961.  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X no-shaved" by scannin	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00		1.4624 ²⁴ 1.4755
Cu²-cu²-si(ocu²cu²)	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₂ NO ₃ Si Forms self-c 1. Rosa, L. c See also SIP HYDROLYTII [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  26930.0 IC SENSITIVITY	CY: reacts slowly with m  OXYSILANE    Amber liquid  ers which can be "nar  ett.2009, 63, 961.  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X no-shaved" by scannin	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00	1.00	
N	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-{4-PYRIDYLET C ₁₃ H ₂₈ NO ₃ Si Forms self-e 1. Rosa, L., See also SIP HYDROLYTII [98299-74-2] SIP6930.0 2-{2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  6930.0 IC SENSITIVITY  THYL)TRIMETI  SILYLETHYL)PY	CY: reacts slowly with m  OXYSILANE    Amber liquid  ers which can be "nar  ett.2009, 63, 961.  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X no-shaved" by scannin	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00	1.00	
CH2-CH2-Si(OCH2CH3)	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-6 1. Rosa, L. Gee also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS) C ₁₀ H ₁₇ NO ₃ Si See also SIP	THYL)TRIETHO assembled lay et al. Mater. Le 26930.0 IC SENSITIVITY  THYL)TRIMETI SILYLETHYL)PY 26928.0	CY: reacts slowly with m  OXYSILANE  Amber liquid for which can be "narett. 2009, 63, 961. CY: 7: reacts slowly with m  HOXYSILANE  RIDINE	noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00	1.00	
CH2-CH2-Si(OCH2CH3)	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-6 1. Rosa, L. I. See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII	THYL)TRIETHO assembled lay et al. Mater. Le 26930.0 IC SENSITIVITY  THYL)TRIMETI SILYLETHYL)PY 26928.0	CY: reacts slowly with m  OXYSILANE    Amber liquid  ers which can be "nar  ett.2009, 63, 961.  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00	
Cu²-cu²-si(ocu²cu²)	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-c 1. Rosa, L. ( See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII  [27326-65-4]	THYL)TRIETHO assembled lay et al. Mater. Le 26930.0 IC SENSITIVITY  THYL)TRIMETI SILYLETHYL)PY 26928.0	CY: reacts slowly with m  OXYSILANE  Amber liquid for which can be "narett. 2009, 63, 961. CY: 7: reacts slowly with m  HOXYSILANE  RIDINE	noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00	1.00	
Cu²-cu²-si(ocu²cu²)	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-6 1. Rosa, L. I. See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII	THYL)TRIETHO assembled lay et al. Mater. Le 26930.0 IC SENSITIVITY  THYL)TRIMETI SILYLETHYL)PY 26928.0	CY: reacts slowly with m  OXYSILANE  Amber liquid for which can be "narett. 2009, 63, 961. CY: 7: reacts slowly with m  HOXYSILANE  RIDINE	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00	
CH2-CH2-Si(OCH2CH3)3	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-c 1. Rosa, L. ( See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII  [27326-65-4]	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  6930.0 IC SENSITIVITY  THYL)TRIMETI  SILYLETHYL)PY  26928.0 IC SENSITIVITY	C: 7: reacts slowly with m  OXYSILANE  Amber liquid ers which can be "narett. 2009, 63, 961.  C: 7: reacts slowly with m  HOXYSILANE  RIDINE  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00	
CH ₂ -CH ₂ -Si(OCH ₂ CH ₃ ) ₃ CH ₂ CH ₂ Si(OCH ₃ ) ₃	pKa: 4.8 Immobilizab HYDROLYTII [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-c ₁ 1. Rosa, L. (See also SIP HYDROLYTII [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS) C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII [27326-65-4] SIT8157.0	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  6930.0 IC SENSITIVITY  THYL)TRIMETI  SILYLETHYL)PY  26928.0 IC SENSITIVITY	C: 7: reacts slowly with m  OXYSILANE  Amber liquid ers which can be "narett. 2009, 63, 961.  C: 7: reacts slowly with m  HOXYSILANE  RIDINE  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33 Flashpoint: >1	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00 1.06 50g \$164.00	
CH2-CH2-Si(OCH2CH3)3	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L. t. See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII  [27326-65-4] SIT8157.0 2-[2-(TRICHLORG C ₇ H ₆ Cl ₅ NSi	IC SENSITIVITY  THYL)TRIETHO  assembled lay et al. Mater. Le  6930.0 IC SENSITIVITY  THYL)TRIMETI  SILYLETHYL)PY  26928.0 IC SENSITIVITY	C: 7: reacts slowly with m  OXYSILANE  Amber liquid  ers which can be "nar  ett. 2009, 63, 961.  C: 7: reacts slowly with m  HOXYSILANE  (FIDINE  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33 Flashpoint: >1	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00 1.06 50g \$164.00	
CH ₂ -CH ₂ -Si(OCH ₂ CH ₃ ) ₃ CH ₂ CH ₂ Si(OCH ₃ ) ₃	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L. t. See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII  [27326-65-4] SIT8157.0 2-[2-(TRICHLORG C ₇ H ₆ Cl ₅ NSi	THYL)TRIETHO assembled lay et al. Mater. Le 26930.0 IC SENSITIVITY THYL)TRIMETI SILYLETHYL)PY 26928.0 IC SENSITIVITY 26928.0 IC SENSITIVITY 26928.0 IC SENSITIVITY	C: 7: reacts slowly with m  OXYSILANE  Amber liquid  ers which can be "nar  ett. 2009, 63, 961.  C: 7: reacts slowly with m  HOXYSILANE  (FIDINE  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33 Flashpoint: >1	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00 1.06 50g \$164.00	
CH2-CH2-S(OCH2CH3)	pKa: 4.8 Immobilizab HYDROLYTII  [198567-47-4] SIP6928.0 2-(4-PYRIDYLET C ₁₃ H ₂₃ NO ₃ Si Forms self-a 1. Rosa, L. ( See also SIP HYDROLYTII  [98299-74-2] SIP6930.0 2-(2-PYRIDYLET 2-(TRIMETHOXYS C ₁₀ H ₁₇ NO ₃ Si See also SIP HYDROLYTII  [27326-65-4] SIT8157.0 2-[2-(TRICHLOR( C ₇ H ₆ Cl ₃ NSi Fuming solit See also SIP	THYL)TRIETHO  assembled lay et al. Mater. Le  6930.0 IC SENSITIVITY  THYL)TRIMETI  SILYLETHYL)PY  6928.0 IC SENSITIVITY  COSILYL)ETHY  id, moisture se  26930.0	C: 7: reacts slowly with m  OXYSILANE  Amber liquid  ers which can be "nar  ett. 2009, 63, 961.  C: 7: reacts slowly with m  HOXYSILANE  (FIDINE  C: 7: reacts slowly with m	noisture/water HMIS: 3-2-1-X  no-shaved" by scannin noisture/water HMIS: 3-2-1-X	269.43 ng AFM. ¹ 227.33 Flashpoint: >1 240.59	10g \$124.00 105 / 0.9 10g \$119.00 105 / 0.3 110°C (>230°F)	1.00 1.06 50g \$164.00	

	<del></del>			MW	bp/mm (mp)	D ₄ ²⁰	<b>n</b> _D ²⁰
SIT8158 4-[2-(TRIC	.0 CHLOROSILYL)ETH	YLPYRIDINE		240.59		0.93	
CH ₂ SiCI ₃ C ₇ H ₈ CI ₃ Nt Hazy Emp 1. Pa	Si y liquid; extremely moloyed in polypyridine aulson, S. et al. <i>J. Cl</i>	15-20% in toluene oisture sensitive self-assembled monol nem. Soc., Chem. Com	ayers. ¹ mun. <b>1992</b> , 21, 1615.	Flashpoint: 4°C	(39°F)	3,00	
HYD	ROLYTIC SENSITIVIT	-(TRIMETHOXYSILYLE Y: 8: reacts rapidly with m EC 241-138-3	oisture, water, protic solv	ents	25a \$22.00	100g \$104.00	
[17082-70 SIT8187		EC 241-130-3	HMIS: 3-4-1-X		25g \$32.00	100g \$104.00	
$\begin{array}{c} \text{N-(3-TRIE} \\ \text{IMIDAZOI} \\ \text{3-(2-IMIDA} \\ \text{PC}_2\text{H}_5 \\ \text{CH}_2\text{Si} = \text{OC}_2\text{H}_5 \\ \end{array}  \text{Viso} \\ \end{array}$	ETHOXYSILYLPROP LE I <i>ZOLIN-1-YL)PROPYL</i> J ₃ Si osity: 5 cSt.	YL)-4,5-DIHYDRO- TRIETHOXYSILANE, IME ted temperature-cure e		274.43 Flashpoint: >11	134 / 2 0°C (>230°F)	1.005	1.452
Utiliz Forn	zed in HPLC of metal ns proton vacancy co	chelates. ¹ I chelates. ¹ Inducting polymers w/s	ulfonamides by sol-gel.				
1. Si 2. Do 3. M	uzuki, T. et al. <i>Chem.</i> e Zea Bermudez, V. darkowitz, M. et al. <i>La</i> ROLYTIC SENSITIVIT	et al. Sol-Gel Optics II, angmuir <b>2000</b> , 16, 1759 Y: 7: reacts slowly with m	SPIE Proc. <b>1992</b> , 1728	, ,			
[58068-97		EC 261-093-3	HMIS: 2-1-1-X		25g \$18.00	100g \$62.00	2kg \$680.00
OXY)PRO C ₃₂ H ₆₇ KO	XYSILYLPROPYL(P DPYLPOTASSIUM SI	OLYETHYLENE- ULFATE, 50% in ethano	lc	823.01			
(CH ₂ CH ₂ O) _{6.5} (CH ₂ ) ₃ Si- OC	—OC ₂ H ₅ ₂ H ₅	Y: 7: reacts slowly with m	ojeturo/wator				
		T. 7. Teacts Slowly With Th	HMIS: 2-2-1-X		2.5g \$240.00		
CH ₂ Si(OH) ₃ C ₃ H ₁₀ O ₆ S	DROXYSILYL)-1-PR Si	OPANESULFONIC AC 30-35% in water	ID	202.26		1.12	
	oloyed in preparation	of nanoscale ionic silic					
Emp 1. G HYD <u>[</u> 70942-24	oloyed in preparation iannelis, E. et al. <i>App</i> ROLYTIC SENSITIVIT I-4] TSCA	of nanoscale ionic silic ol. Organomet. Chem. 1 Y: 0: forms stable aqueou	<b>2010</b> , <i>24</i> , 581.		25g \$51.00	100g \$166.00	
Emp 1. G HYD <u>[70942-24</u> SIT8378 3-TRIHYE	oloyed in preparation iannelis, E. et al. <i>App</i> ROLYTIC SENSITIVIT 1-4] TSCA  .5 DROXYSILYLPROPY SALT, 42% in water	ol. Organomet. Chem. 2	2010, 24, 581. s solutions HMIS: 3-0-0-X	238.18 Flashpoint: 79°	-	100g \$166.00	
Emp 1. G HYD 1. G 1.	ployed in preparation iannelis, E. et al. <i>App</i> ROLYTIC SENSITIVIT L-4] TSCA  .5 DROXYSILYLPROPY SALT, 42% in water D ₆ PSi tains 4-5% methanol	ol. Organomet. Chem. 2 Y: 0: forms stable aqueou  "LMETHYLPHOSPHAT  , sodium methylphosph Y: 0: forms stable aqueou	2010, 24, 581. s solutions HMIS: 3-0-0-X  E, - onate s solutions		-		
Emp 1. G HYD 1. G 1. G HYD 1. G	oloyed in preparation iannelis, E. et al. <i>App</i> ROLYTIC SENSITIVIT L-4] TSCA  5.5 DROXYSILYLPROPY SALT, 42% in water 0 ₆ PSi tains 4-5% methanol ROLYTIC SENSITIVIT S-1] TSCA	ol. Organomet. Chem. 2 Y: 0: forms stable aqueou LMETHYLPHOSPHAT , sodium methylphosph	2010, 24, 581. s solutions HMIS: 3-0-0-X		-		
Emp 1. G HYD	oloyed in preparation iannelis, E. et al. <i>App</i> ROLYTIC SENSITIVIT 1-4] TSCA 1.5 SROXYSILYLPROPY SALT, 42% in water 0 ₆ PSi tains 4-5% methanol ROLYTIC SENSITIVIT 3-1] TSCA 1.0 ETHOXYSILYLETHYI IYLAMMONIUM CHL IO ₅ Si	ol. Organomet. Chem. 2 Y: 0: forms stable aqueou LMETHYLPHOSPHAT , sodium methylphosph Y: 0: forms stable aqueou EC 284-799-3	2010, 24, 581. s solutions HMIS: 3-0-0-X  E, - onate s solutions HMIS: 1-2-0-X		C (174°F)	1.25	
Emp 1. G HYD 170942-24 SIT8378 3-TRIHYE SODIUM: C ₄ H ₁₂ NaC Cont HYD 84962-98 SIT8395 N-(TRIME TRIMETH C ₁₅ H ₂ CIN Cant HYD	ployed in preparation iannelis, E. et al. App. ROLYTIC SENSITIVIT L-4] TSCA  .5 DROXYSILYLPROPY SALT, 42% in water $0_0$ PSi tains 4-5% methanol ROLYTIC SENSITIVIT TSCA  .0 CTHOXYSILYLETHYI IYLAMMONIUM CHL $10_0$ Si didate for exchange i ROLYTIC SENSITIVIT SENSITIVI	ol. Organomet. Chem. 2 Y: 0: forms stable aqueou Y: 0: forms stable aqueou Y: UMETHYLPHOSPHAT , sodium methylphosph Y: 0: forms stable aqueou EC 284-799-3 L)BENZYL-N,N,N-ORIDE, 60% in methal	2010, 24, 581. s solutions HMIS: 3-0-0-X  E, - onate s solutions HMIS: 1-2-0-X	Flashpoint: 79°(	C (174°F)	1.25 500g \$64.00	
Emp 1. G HYD 1. G	ployed in preparation iannelis, E. et al. App. ROLYTIC SENSITIVIT 1-4] TSCA  .5  DROXYSILYLPROPY SALT, 42% in water open in the second in the	of. Organomet. Chem. 2 Y: 0: forms stable aqueou Y: 0: forms stable aqueou CIMETHYLPHOSPHAT , sodium methylphosph Y: 0: forms stable aqueou EC 284-799-3  L)BENZYL-N,N,N- ORIDE, 60% in methal resins and extraction pl Y: 7: reacts slowly with m  YL)DIETHYLENE-	2010, 24, 581. s solutions HMIS: 3-0-0-X  E, - onate s solutions HMIS: 1-2-0-X	Flashpoint: 79°0 333.93 Flashpoint: 25°0 265.43 Flashpoint: 137	C (174°F)  100g \$16.00  C (77°F)  25g \$86.00	1.25 500g \$64.00	1.4590
Emp 1. G HYD 1. G SIT8378 3-TRIHYE SODIUM: C ₄ H ₁₂ NaC Comi HYD 1. G	ployed in preparation iannelis, E. et al. App ROLYTIC SENSITIVIT L-4] TSCA .5 DROXYSILYLPROPY SALT, 42% in water DePSi atians 4-5% methanol ROLYTIC SENSITIVIT B-1] TSCA .0 ETHOXYSILYLETHYI IYLAMMONIUM CHL IO ₃ Si didate for exchange i ROLYTIC SENSITIVIT .0 THOXYSILYLPROPY E, 95% 2 ₃ Si f treated surface: 37 dener, coupling agent ROLYTIC SENSITIVIT SENSITIVIT L-1] TSCA	of. Organomet. Chem. 2 Y: 0: forms stable aqueou Y: 0: forms stable aqueou CLMETHYLPHOSPHAT , sodium methylphosph Y: 0: forms stable aqueou EC 284-799-3 L)BENZYL-N,N,- ORIDE, 60% in methal resins and extraction pl Y: 7: reacts slowly with me YL)DIETHYLENE5 mN/m	2010, 24, 581. s solutions HMIS: 3-0-0-X  E, - onate s solutions HMIS: 1-2-0-X  nol nases pisture/water HMIS: 3-3-1-X	Flashpoint: 79°0 333.93 Flashpoint: 25°0 265.43 Flashpoint: 137	C (174°F)  100g \$16.00  C (77°F)  25g \$86.00  114-8 / 2  °C (279°F)	1.25 500g \$64.00 0.966	1.4590
Emp 1. G HYD 1. G HYD 170942-24 SIT8378 3-TRIHYE SODIUM: C ₄ H ₁₂ NaC Coni HYD 184962-98 SIT8398 N-(TRIME TRIMETH C ₁₅ H ₂₈ CIN Can HYD SIT8398 (3-TRIME TRIAMINE TRIAMINE TRIAMINE CH ₂ CH ₂ H ₃ O) ₃ SiCH ₂ SIT8398 (3-TRIME TRIAMINE TRIAMINE TRIAMINE TRIAMINE TRIAMINE SIT8402 N-(TRIME TRIACETI C ₁₄ H ₂₅ N ₂ N (3-TRIME TRIAMINE TRIAMINE TRIAMINE TRIACETI C ₁₄ H ₂₅ N ₂ N (TRIME TRIACETI C ₁₄ H ₂₅ N ₂ N	ployed in preparation iannelis, E. et al. App. ROLYTIC SENSITIVIT L-4] TSCA  .5 DROXYSILYLPROPY SALT, 42% in water $0_0$ PSi tatins 4-5% methanol ROLYTIC SENSITIVIT TSCA  .0 CTHOXYSILYLETHYI IYLAMMONIUM CHLIO3Si didate for exchange is ROLYTIC SENSITIVIT CONTROLYTIC SENSITIVIT CONTROL TISCA  .0 CTHOXYSILYLPROPULC ACID, TRISODIUI	of. Organomet. Chem. 2 Y: 0: forms stable aqueous EC 284-799-3 L)BENZYL-N,N,N-ORIDE, 60% in methal resins and extraction play: 7: reacts slowly with methal Y: 0: forms stable aqueous EC 284-799-3 L)BENZYL-N,N,N-ORIDE, 60% in methal resins and extraction play: 7: reacts slowly with methal Y: 7: reacts slowly with methal EC 252-390-9 YI: 0: FTYLENEDIAMIN MI SALT, 35% in water	2010, 24, 581. s solutions HMIS: 3-0-0-X  E, - onate s solutions HMIS: 1-2-0-X  nol nases oisture/water HMIS: 3-3-1-X	Flashpoint: 79°0 333.93 Flashpoint: 25°0 265.43 Flashpoint: 137	25g \$86.00 114-8 / 2 °C (279°F) 1 rat, LD50: >2,000 mg/kg	1.25 500g \$64.00 0.966	1.4590



#### Polymeric Hydrophilic Silanes

Polymeric Amine

bp °C/mm (mp)

MW

/ Ḥ \ /	SSP-060 TRIMETHOXYSILYLPROPYL MODIFIED - (POLYETHYLENIMINE), 50% in isopropanol	1,500-1,800		0.92	
$\begin{pmatrix} 1 + Cl^{-} \\ N + Cl^{-} \end{pmatrix} \begin{pmatrix} H \\ 1 \\ N \end{pmatrix} \begin{pmatrix} 1 \\ 4n \end{pmatrix}$	Viscosity: 125-175 cSt  Employed as a coupling agent for polyamides. ¹	~20% of nitrogens substituted			COMMERCIAL
Si(OCH ₃ ) ₃	In combination with glutaraldehyde immobilizes e				ERC1A
	<ol> <li>Arkles, B. et al. SPI 42nd Composite Inst. Prod</li> <li>Cramer, S. et al. Biotechnol. Bioeng. 1989, 33</li> </ol>	(3), 344.			7
	[136856-91-2] TSCA	HMIS: 2-4-1-X	100g \$28.00	2kg \$364.00	
/ H \ /	SSP-065				
( T + CI ) (H	DIMETHOXYSILYLMETHYLPROPYL MODIFIED -	1,500-1,800		0.92	202
$\langle \rangle \sim \langle \rangle $	(POLYETHYLENIMINE), 50% in isopropanol				3
Si(OCH ₃ ) ₂	Viscosity: 100-200 cSt	~20% of nitrogens substituted			COMMERCIA
1	Primer for brass				274
OCH ₃	[125441-88-5] TSCA	HMIS: 2-4-1-X	100g \$38.00	2kg \$494.00	7
				·	

#### Water-borne Aminoalkyl Silsesquioxane Oligomers

**TSCA** 

 $D_4^{20}$ 



Name

	Functional Molecula		Molecular	Weight %	Specific				
Code	Group	Mole %	Weight	in solution	Gravity	Viscosity	pН	Price/100g	3kg
WSA-7011	Aminopropyl	65-75	250-500	25-28	1.10	5-15	10-10.5	\$29.00	\$435.00
WSA-9911*	Aminopropyl	100	270-550	22-25	1.06	5-15	10-10.5	\$24.00	\$360.00
WSA-7021	Aminoethylaminopropyl	65-75	370-650	25-28	1.10	5-10	10-11	\$29.00	\$435.00
WSAV-6511**	Aminopropyl, vinyl	60-65	250-500	25-28	1.11	3-10	10-11	\$35.00	\$480.00
*CAS [29159-3	*CAS [29159-37-3] **[207308-27-8]								

Aqueous exposure of treated surfaces converts Epoxy-Silanes to Hydrophilic-Diols

## **Epoxy Functional Silanes Epoxy Functional Silanes - Trialkoxy**

name	MW	bp/mm (mp)	D ₄ ²⁰	<b>n</b> _D ²⁰	_
SIE4668.0 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIETHOXYSILANE C14H2204Si Adhesion promoter for water-borne coatings on alkaline substrates		114-7 / 0.4 04°C (219°F)	1.015	1.4455	COMMERCIAL
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [10217-34-2] TSCA HMIS: 2-1-1-X		25g \$14.00	100g \$46.00	2kg \$320.00	TAL
SIE4670.0 2-(3,4-EPOXYCYCLOHEXYL)ETHYLTRIMETHOXY- SILANE C ₁₁ H ₂₂ O ₄ Si Viscosity: 5.2 cSt Coefficient of thermal expansion: 0.8 x 10 ⁻³ Vapor pressure, 152°: 10 mm Ring epoxide more reactive than glycidoxypropyl systems UV initiated polymerization of epoxy group with weak acid donors Forms UV-curable coating resins by controlled hydrolysis.  Used to make epoxy-organosilica particles w/ high positive Zeta p	TOXICITY: c yc of treated Specific wetti	95-7 / 0.25 46°C (295°F) oral rat, LD50: 12,300 mg/kg surfaces: 39.5 mN/m ing surface: 317 m²/g	1.065	1.4490	COMMERCIAL
1. Just, O. et al. <i>Mater. Res. Soc. Symp. Proc.</i> <b>1996</b> , <i>415</i> , 111.  2. Nakamura, M. and Ishimura, K. <i>Langmuir</i> <b>2008</b> , <i>24</i> , 12228.  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water  [3388-04-3] TSCA EC 222-217-1 HMIS: 3-1-1-X		100g \$24.00	2kg \$270.00	18kg \$1,044.00	
SIE4675.0				-	
5,6-EPOXYHEXYLTRIETHOXYSILANE $^{\text{CH}_2\text{CH}_2\text{Si}(\text{OC}_2\text{H}_5)_3}$ $^{\text{C}_{12}\text{H}_2\text{sO}_4\text{Si}}$	262.42 Flashpoint: 9	115-9 / 1.5 9°C (210°F)	0.960 25	1.4254 ²⁵	
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [86138-01-4] HMIS: 3-2-1-X		10g \$96.00			
SIG5839.0 (3-GLYCIDOXYPROPYL)TRIETHOXYSILANE C12H26O5Si Coupling agent for latex polymers	278.42 Flashpoint: 1	124 / 3 44°C (291°F)	1.00	1.425	COMMERCIAL
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water  [2602-34-8] TSCA EC 220-011-6 HMIS: 3-1-1-X		25g \$34.00	100g \$110.00	2kg \$580.00	TAL
SIG5840.0 (3-GLYCIDOXYPROPYL)TRIMETHOXYSILANE	236.34	120 / 2 (<-70	)) 1.070	1.4290	
3-(2,3-EPOXYPROPOXY)PROPYLTRIMETHOXYSILANE GLYMO, GPTMS, A-187 C ₉ H ₂₀ O ₃ Si Viscosity: 3.2 cSt Component in abrasion resistant coatings for plastic optics Coupling agent for epoxy composites employed in electronic "chip Component in aluminum metal bonding adhesives Used to prepare epoxy-containing hybrid organic-inorganic materi 1. Innocenzi, P. et al. Chem. Mater. 1999, 11, 1672. HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	TOXICITY: c Surface tensi Specific wetti " encapsulation	35°C (276°F) oral rat, LD50: 8,400 mg/kg ion: 38.5 mN/m ing surface: 331 m²/g			COMMERCIAL
[2530-83-8] TSCA EC 219-784-2 HMIS: 3-1-1-X		100g \$16.00	2kg \$138.00	18kg \$693.00	
SIG5840.1  (3- GLYCIDOXYPROPYL)TRIMETHOXYSILANE 99+%  C ₀ H ₂₀ O ₆ Si  Low fluorescence grade for high-throughput screening  HYDROLYTIC SENSTIVITY: 7: reacts slowly with moisture/water	·	120 / 2 (<-70 35°C (276°F)	0) 1.070	1.4290	
[2530-83-8] TSCA EC 219-784-2 HMIS: 3-1-1-X		25g \$180.00	in fluoropolymer bottle		_
C ₁₁ H ₂₄ O ₄ Si Viscosity: 3.0 cSt Si=OC ₄ II, Employed in scratch resistant coatings for eye glasses	TOXICITY: 0	122-6 / 5 22°C (252°F) ral rat, LD50: >2,000 mg/kg	0.978 ²⁵	1.431	COMMERCIAL
HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water [2897-60-1] TSCA EC 220-780-8 HMIS: 2-1-1-X	•	.u 25g \$38.00	100g \$124.00	2kg \$580.00	AL .
CH ₃ (3-GLYCIDOXYPROPYL)METHYLDIMETHOXYSILANE  C ₉ H ₂₉ O ₄ Si  Relative hydrolysis rate vs. SIG5840.0: 7.5:1	220.34 Flashpoint: 1	100 / 4 05°C (221°F)	1.02	1.431 ²⁵	
C ₁₁ H ₂₄ O ₄ Si  Viscosity: 3.0 cSt  Employed in scratch resistant coatings for eye glasses  Coupling agent for latex systems with reduced tendancy to gel cor  HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water  [2897-60-1] TSCA EC 220-780-8 HMIS: 2-1-1-X  SIG5836.0  (3-GLYCIDOXYPROPYL)METHYLDIMETHOXYSILANE  C ₉ H ₂₀ O ₄ Si  Relative hydrolysis rate vs. SIG5840 0: 7.5.1	Flashpoint: 1 TOXICITY: o mpared to SIG5840 220.34 Flashpoint: 1	22°C (252°F) ral rat, LD50: >2,000 mg/kg .0  25g \$38.00	100g \$124.00	.02	2kg \$580.00 .02 1.431 ²⁵
M ₂	218.37	100 / 3	0.950	1.4337 ²⁵	
(3-GLYCIDOXYPROPYL)DIMETHYLETHOXYSILANE C10-H22O ₃ Si HYDROLYTIC SENSITIVITY: 7: reacts slowly with moisture/water	Flashpoint: 8				

## Silyl Hydrides

Silyl Hydrides are a distinct class of silanes that behave and react very differently than conventional silane coupling agents. Their application is limited to deposition on metals (see discussion on p. 17). They liberate hydrogen on reaction and should be handled a with appropriate caution.

	name	MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
	SID4629.6				
	DODECYLSILANE	200.44	80 / 7	0.7753	1.4380 ²⁵
$H_3(CH_2)_{10}CH_2SiH_3$	C ₁₂ H ₂₈ Si Forms SAMs on gold and titanium surfaces HYDROLYTIC SENSITIVITY: 4: no reaction with water under neutral conditio	ine			
	[872-19-5] HMIS: 2-2-1-X	1113	10g \$78.00		
	SIO6635.0		109 \$10.00		
	n-OCTADECYLSILANE	284.60	195 / 15 (29)	0.794	
ii ii	C ₁₈ H ₄₀ Si Contains 4-6% C ₁₈ isomers		>110°C (>230°F)	001	
(CH ₂ ) ₁₆ CH ₂ -Si-H	Forms self-assembled monolayers on titanium. ¹		,		
Ĥ	Reacts onto a gold surface to form monolayers of long alkyl chains. ² 1. Fadea, A. et al. <i>J. Am. Chem. Soc.</i> <b>1989</b> , <i>121</i> , 12184. 2. Owens, T. M. et al. <i>J. Am. Chem. Soc.</i> <b>2002</b> , <i>124</i> , 6800. HYDROLYTIC SENSITIVITY: 3: reacts with aqueous base				
	[18623-11-5] TSCA EC 242-453-9 HMIS: 2-1-1-X		25g \$46.00	100g \$150.00	
	SIT8173.0				
Carrier II	TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)SILANE	378.21	75 / 25	1.446	1.318
g(CF ₂ ) ₅ CH ₂ CH ₂ -Si-H H	C ₈ H ₇ F ₁₃ Si Provides vapor-phase hydrophobic surfaces on titanium, gold, silicon HYDROLYTIC SENSITIVITY: 3: reacts with aqueous base				
	[469904-32-3] HMIS: 3-3-1-X		10g \$190.00		
100.00	SIU9048.0				
H	10-UNDECENYLSILANE	184.40		0.768 25	1.4415 ²⁵
=CH(CH ₂ ) ₈ CH ₂ Si-H	$C_{11}H_{24}Si$				
H	Forms self-assembled monolayers on gold				
	HYDROLYTIC SENSITIVITY: 3: reacts with aqueous base				
	HMIS: 2-3-1-X		2.5g \$134.00		

MethylHydrosiloxane homopolymers are used as water-proofing agents, reducing agents and as components in some foamed silicone systems.

$$\begin{array}{c|c} CH_3 & H & CH_3 \\ -I & I & I \\ CH_3 - Si - O & Si - O \\ -I & CH_3 & CH_3 \end{array}$$

polyMethylHydrosiloxanes, Trimethylsiloxy terminated

Tg: -	119°	V.T.C:	0.50	ĺ

CAS: [63148-57-2] TSCA

Code	Viscosity	Molecular Weight	Mole % (MeHSiO)	Equivalent Weight	Specific Gravity	Refractive Index	Price/100g	Price/3 kg
HMS-991	15-25	1400-1800	100	67	0.98	1.395	\$14.00	\$96.00
HMS-992	25-35	1800-2100	100	65	0.99	1.396	\$19.00	\$134.00
HMS-993	35-45	2100-2400	100	64	0.99	1.396	\$24.00	\$168.00

### **UV Active and Fluorescent Silanes**

bp/mm (mp)

MW

(C2H5O)3SiCH2CH2CH2O CH₂C (C₂H₅O)₃SiCH₂CH₂CH₂O

SIB1824.8 BIS(4-TRIETHOXYSILYLPROPYL-3-METHOXY- 777.07 PHENYL)-1,6-HEPTANE-3,5-DIONE tech-90

name

C₃₉H₆₀O₁₂Si₂ UV: 220, 232(max), 354(broad) metal chelating chromophore

HMIS: 2-1-1-X

500mg/\$180.00



 $NH(CH_2)_3Si(OC_2H_5)_3$  $O_2N$  $\dot{N}O_2$ 

SID4352.0 3-(2,4-DINITROPHENYLAMINO)PROPYL-387.46 (27-30°)mp 1.5665 TRIETHOXYSILANE, 95% N-[3-(TRIETHOXYSILYL)PROPYL]-2,4-DINITROPHENYLAMINE  $C_{15}H_{25}N_3O_7Si$  viscous liquid or solid flashpoint: >110°C (230°F)

UV: 222, 258, 350(max), 410 forms  $\chi^2$  non-linear optical sol-gel materials by corona poling^{1,2}.

1. E. Toussaere et al, Non-Linear Optics, 2, 37, 1992

2. B. Lebeau et al, J. Mater. Chem., 4, 1855, 1994

[71783-41-0] HMIS: 2-1-0-X 25g/\$54.00 100g/\$176.00



CH. (C₂H₅O)₂SiCH₂CH₂CH₂O SIH6198.0 2-HYDROXY-4-(3-METHYLDIETHOXYSILYL-388.54

PROPOXY) DIPHENYLKETONE, 95% viscosity, 25°: 100-125 cSt. monomer for UV opaque fluids  $C_{21}H_{28}O_5Si$ 

HMIS: 2-1-1-X

25g/\$86.00

(C2H5O)3SiCH2CH2CH2O

SIH6200.0 2-HYDROXY-4-(3-TRIETHOXYSILYLPROPOXY)- 418.56 1.54525 DIPHENYLKETONE, 95% viscosity, 25°: 125-150 cSt. UV: 230, 248, 296(max), 336 C₂₂H₃₀O₆Si density: 1.12

strong UV blocking agent for optically clear coatings, abosrbs from 210-420nm

UV blocking agent¹. B. Anthony, US Pat. 4,495,360, 1985

[79876-59-8] TSCA HMIS: 2-1-1-X 25g/\$60.00 100g/\$195.00



(CH₃CH₂O)₃SiCH₂CH₂CH₂NHCC

SIM6502.0 0-4-METHYLCOUMARINYL-N-[3-(TRIETHOXY-423.54 (88-90°)mp SILYL)PROPYL]CARBAMATE UV: 223, 281, 319.5(max) C20H29NO7Si soluble: THF

immobilizeable fluorescent compound1. 1. B. Arkles, US Pat. 4,918,200, 1990

[129119-78-4] HMIS: 2-2-1-X 10g/\$120.00



(C2H5O)3SiCH2CH2CH2O

SIT8186.2 7-TRIETHOXYSILYLPROPOXY-5-HYDROXY-458 58 FLAVONE UV: 350nm (max)

C₂₄H₃₀O₇Si



SIT8187.0 N-(TRIETHOXYSILYLPROPYL)DANSYLAMIDE 454.66 115-9°/0.1 1.5421 5-DIMETHYLAMINO-N-(3-TRIETHOXYSILYLPROPYL)-

NAPTHALENE-1-SULFONAMIDE viscous liquid - soluble in toluene THF UV: 222(max), 256, 354

 $C_{21}H_{34}N_2O_5SSi\\$ density: 1.12 fluorescent- employed as a tracer in UV cure composites fluorescence probe for crosslinking in silicones¹.

1. P. Leezenberg et al, Chem. Mat., 7, 1784, 1995 [70880-05-6] TSCA HMIS: 2-1-1-X 0.5g/\$84.00 1.0g/\$148.00



CH2CH2CH2Si(OCH2CH3)3

2-(2-TRIETHOXYSILYLPROPOXY-5-METHYL-429.59

PHENYL)BENZOTRIAZOLE  $C_{22}H_{31}N_3O_4Si$ 

HMIS: 2-1-1-X

UV: 300, 330(max)

1.0g/\$48.00 5.0g/\$192.00

UV blocking agent/stabilizer

10a/\$94.00 HMIS: 2-1-1-X

10⁻³ M in THF

$(C_2H_5O)_3SiCH_2$ $CH_2$ $O_2N$ $CH_2$ $CH_2$ $CH_2$ $CH_2$ $CH_2$ $CH_2$	SIT8191.0 3-(TRIETHOXYSILYLPROPYL)-p-NITRO-BENZAMIDE $C_{16}H_{26}N_2O_6Si$ UV max: 224, 260, 292(s) used to prepare diazotizable supports f H. Weetall, US Pat., 3,652,761 [60871-86-5] TSCA HMIS: 2-1-1-X	370.48 (54-5°)mp for enzyme immobilization ¹ . 25g/\$60.00	
(C,H,O),SiCH,CH,CH,HNCO	SIT8192.4 N-TRIETHOXYSILYLPROPYL-O-QUININE- URETHANE. 95%	571.79 (82-4°)mp soluble: warm toluene	1.06

UV max: 236(s), 274, 324, 334 fluorescent, optically active silane

name

 $C_{30}H_{45}N_3O_6Si$ 

HMIS: 2-1-1-X





## **Chiral Silanes**

bp/mm (mp)

MW

	name	MW	bp/mm (mp)	D ₄ ²⁰	$n_{\scriptscriptstyle D}^{^{20}}$
CH ₃ CH ₃ Si-OCH ₃	SIM6472.6 (-)-MENTHYLDIMETHYLMETHOXYSILANE C ₁₃ H ₂₈ OSi reagent for chiral separatioms	228.45			
H ₃ C CH CH ₃	HMIS: 3-2-1-X		5.0g/\$188.00		
$H_3C$ H C=NH C=O $(C_2H_5O)_3Si(CH_2)_3 - NH$	SIP6731.5 (R)-N-1-PHENYLETHYL-N'-TRIETHOXYSILYL-PROPYLUREA C ₁₈ H ₃₂ N ₂ O ₄ Si optically active silane; treated surfaces resolve 6	•	> 110°C(>230°F)	1.05 ²⁵	
32-9/10/11/29	[68959-21-7] TSCA HMIS: 2-1-0-X		25g/\$76.00		
$C_{2}H_{5}O)_{3}Si(CH_{2})_{3}-NH$	SIP6731.6 (S)-N-1-PHENYLETHYL-N'-TRIETHOXYSILYL-PROPYLUREA C ₁₈ H ₃₂ N ₂ O ₄ Si optically active silane; treated surfaces resolve 6 [68959-21-7] TSCA HMIS: 2-1-0-X	•	> 110°C(>230°F) 25g/\$76.00	1.05 ²⁵	
CU	[00333-21-7] 130A 11W13.2-1-0-X		239/ψ10.00		
CH ₃ (C ₂ H ₃ O) ₃ Si CH ₂ OCNHCH ₂ CH ₂	SIT8190.0 (S)-N-TRIETHOXYSILYLPROPYL-O-MENTHO-CARBAMATE $C_{20}H_{41}NO_5Si$ optically active	406.63 flashpoint:	> 110°C(>230°F)	0.98525	1.4526
^ ő	[68479-61-8] TSCA HMIS: 2-1-1-X		10g/\$64.00		
(C ₂ H ₅ O) ₃ SiCH ₂ CH ₂ CH ₂ HNCO	SIT8192.4 N-TRIETHOXYSILYLPROPYL-O-QUININE-URETHANE, 95% C ₃₀ H ₄₅ N ₃ O ₆ Si fluorescent, optically active silane HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with moi HMIS: 2-1-1-1-X		(82-4°)mp arm toluene 5.0g/\$120.00		

**Surface Modification with Silanes:** What's not covered in "Hydrophobicity, Hydrophilicity and Silane Surface Modification"?

Silanes which are expected to form covalent bonds after deposition onto surfaces are discussed in the Gelest brochure entitled "Silane Coupling Agents: Connecting Across Boundaries" Aminosilanes which are important in some hydrophilic surface treatments are covered in detail.

#### **Further Reading**

#### Silane Coupling Agents - General References and Proceedings

- 1. B. Arkles, Tailoring Surfaces with Silanes, CHEMTECH, 7, 766-778, 1977.
- 2. E. Plueddemann, "Silane Coupling Agents," Plenum, 2nd edition, 1990.
- 3. K. Mittal, "Silanes and Other Coupling Agents," VSP, 1992.
- 4. D. Leyden and W. Collins, "Silylated Surfaces," Gordon & Breach, 1980.
- 5. D. E. Leyden, "Silanes, Surfaces and Interfaces," Gordon & Breach 1985.
- 6. J. Steinmetz and H. Mottola, "Chemically Modified Surfaces," Elsevier, 1992.
- 7. J. Blitz and C. Little, "Fundamental & Applied Aspects of Chemically Modified Surfaces," Royal Society of Chemistry, 1999.

#### Substrate Chemistry - General References and Proceedings

- 8. R. Iler, "The Chemistry of Silica," Wiley, 1979.
- 9. S. Pantelides, G. Lucovsky, "SiO₂ and Its Interfaces," MRS Proc. 105, 1988.

#### Hydrophobicity & Hydrophilicity

- 10. C. Tanford, "The Hydrophobic Effect," Wiley, 1973.
- 11. H. Butt, K. Graf, M. Kappl, "Physics and Chemistry of Interfaces," Wiley, 2003.
- 12. A. Adamson, "Physical Chemistry of Surfaces," Wiley, 1976.
- 13. F. Fowkes, "Contact Angle, Wettability and Adhesion," American Chemical Society, 1964.
- 14. D. Quere "Non-sticking Drops" Rep. Prog. Phys. 68, 2495, 2005.
- 15. McCarthy, T. A Perfectly Hydrophobic Surface, J. Am. Chem. Soc., 128, 9052, 2006.
- 16. B. Arkles, Y. Pan, Y. Kim., The Role of Polarity on the Substitution of Silanes Employed in Surface Modification, in "Silanes and Other Coupling Agents Vol 5, K. Mittal Ed. p.51 VSP (Brill) 2009.



picture courtesy of D. Teff.

## **Additional Product Information on Silanes & Silicones**

### For Material Science:

Hydrophobicity, Hydrophilicity and Silane Surface **Modification** 

Organosilanes are used extensively for modification of surface properties. This 80-page





## Agents Silane coupling

Silane Coupling

agents enhance adhesion, increase mechanical properties of composites, improve dispersion of pigments and fillers



and immobilize catalysts and biomaterials. This 48 page brochure describes chemistry, techniques, applications and physical properties of silane coupling agents.

#### Micro-Particle Surface Modification

The surface properties of micro-particles can be altered to match the requirements of various applications. Surface treatment services provided on a custom basis at Gelest are described. This brochure reviews



deposition technologies and silane chemistries provided by Gelest that allow end-users to modify their micro-particles to achieve optimum surface properties for composite, separation, dispersion and other applications.

#### Silicone Fluids-Stable, Inert Media

Design and Engineering properties for conventional silicone fluids as well as thermal, fluorosilicone, hydrophilic and low tempera-



ture grades are presented in a 24 page selection guide. The brochure provides data on thermal, rheological, electrical, mechanical and optical properties for silicones. Silicone fluids are available in viscosities ranging from 0.65 to 2,500,000 cSt.

#### Reactive Silicones -Forging New Polymer Links

The 48 page brochure describes reactive silicones that can be formulated into coatings, membranes, cured

rubbers and adhesives for mechanical, optical, electronic and ceramic applications. Information on reactions and cures of silicones as well as physical properties shortens product development time for chemists and engineers.

#### Silicon Compounds: Silanes and **Silicones**

Detailed chemical properties and reference articles for over 1600 compounds. The 590 page catalog of silane and sili-



cone chemistry includes scholarly reviews as well as detailed information on various applications.

## For Synthesis:

#### Silicon-Based **Blocking** Agents

These silicon reagents are used for functional group protection, synthesis and derivatization. The 28 page



brochure presents detailed application information on silvlation reagents for pharmaceutical synthesis and analysis. Detailed descriptions are presented on selectivity for reactions, resistance to chemical transformations and selective deblocking conditions. Over 300 references are provided.

#### Silicon-Based Reducing Agents These siliconbased reagents are employed in the reduction of various organic and inorganic systems. The 24 page brochure



tion complete with literature references for a variety of reductions using organosilanes.

#### Silicon-Based Cross-Coupling Reagents

A variety of organosilanes have been shown to enter into cross-coupling protocols. This 36 page brochure with 105 refer-



ences reviews selected approaches and some of the key aspects of the organosilane approach to cross-coupling chemistry. An emphasis is placed on the more practical reactions.

