AKA005 Moisture, air stable alumina precursor.1 1. Laine, R. et al. J. Chem. Mater. 1996, 6, 1441. AKA020 Employed in preparation of alumina sols and ceramers1,2 and cordierties.3
Primer for adhesives on mild steel.4
Used to make specialty, solid and recyclable catalyst systems for oxidations,5 azide cycloadditions,6 and oxidation and amination of hydroquinones.8 1. Wang, B. et al. Polym. Prepr. 1989, 30, 146.
2. Aryal, A. et al. "Better Ceramics Through Chemistry III" Brinker, Ed. MRS, 1989, p239.
3. Okuyama, M. J. Mater. Res. 1992, 7, 280.
4. Menon, B. et al. in "Silanes & Other Coupling Agents" Mittal, K. Ed. VSP, 1993, p569.
5. Kim, W.-H.; Park, I. S.; Park, J. Org. Lett. 2006, 8, 2543.
6. Park, I. S. et al. Org. Lett. 2008, 10, 497.
7. Kim, S.; Kim, D.; Park, J. Adv. Synth. Catal. 2009, 351, 2573. AKA030 Catalyst for Oppenauer oxidation of alcohols to ketones.1,2
Reacts with AlCl3 to form Al2O3 in non-hydrolytic reaction.3 1. Djerassi, C. "The Oppenauer Oxidation," Org. React. 1951, 6, 207.
2. Oppenauer, R. Org. Syn. 1955, Coll. Vol. 3, 207.
3. Acosta, S. et al. J. Non-Cryst. Solids 1994, 170, 234. F&F: Vol. 1, p 23; Vol. 2, p. 21. AKA036 Employed in organic LED displays; shifts current voltage response to lower voltage.1 1. Matsumura, M. et al. Jpn. J. Appl. Phys., Part 1 1996, 35, 5357. AKA040 In combination with CsOAc and (EtO)4Si forms stable pollucite ceramics.1
In combination with (EtO)4Si and LiNO3 forms β-spodumene.2
Component in rhodamine and coumarin doped fluorescent sol-gel ceramics.3 1. Hogan, M. et al. J. Mater. Res. 1991, 6, 217.
2. Jang, H. et al. J. Mater. Res. 1992, 7, 2273.
3. Dire, S. et al. J. Mater. Chem. 1992, 2, 239. AKA050 Monomer for polymeric aluminates.1 1. Patterson, T. et al. J. Am. Chem. Soc. 1959, 81, 4213. AKA061 Catalyst for depolymerization of polyesters to macrocyclic esters.1,2 1. Cahill J., J.; Rodenberg, H. G. U.S. Patent 4,709,058, 1987.
2. Harris, E. U.S. Patent 4,393,223, 1983. AKA062 Stable precursor for high quality Al oxide films.1 1. Battiston, G. et al. J. de Physique IV: Proc. 1999, 9, 675. AKA063 Generates aluminum oxide films from gas phase at 350-450°.1 1. Temple, D. et al. J. Electron. Mater. 1990, 19, 995. AKA065 Soluble and stable in water solution in pH range 4.5-8.1,2 1. Finnegan, M. et al. Inorg. Chem. 1987, 26, 2171.
2. Finnegan, M. et al. J. Am. Chem. Soc. 1986, 108, 5033. AKA067 Employed in organic LED displays.1,2 1. Tang, C. et al. Appl. Phys. Lett. 1987, 51, 913.
2. Wu, C. et al. Appl. Phys. Lett. 1995, 66, 653. AKA070 Reagent for the reduction of carbonyls to alcohols (Meerwein-Pondorf).1,2
Forms refractory binder with Si(OEt)4.3
Reacts with higher glycols in non-hydrolytic method to yield ceramics.4
Forms highly organized mesoporous silica with EO-PO-EO structure directing agent.5 1. Org. Synth. 1944, Coll. Vol. 2, 178; 1955, Coll. Vol. 3, 207; 1963, Coll. Vol. 4, 192.
3. Emblem, H. et al. PCT Int'l App. 8801991, 1988; Chem. Abstr. 109, 26743p.
4. Inoue, M. et al. J. Mater. Sci. 1992, 11, 269.
5. Dacquin, J. et al. J. Am. Chem. Soc. 2009, 131, 12896. 2. F&F: Vol. 1, p 35; Vol. 3, p 10; Vol. 4, p 15; Vol. 5, p 14; Vol. 6, p 19; Vol. 8, p 15; Vol. 9, p 14; Vol. 11, p 29. AKA078 Dispersion aid for magnetic powders in recording media.1 1. Sony Corp., Chem. Abstr. 98,171766g; Jpn. Patent JP 57135438, 1982. AKA082 Forms mixed alkoxides with magnesium.1 1. Meese-Markschettely, J. Polyhedron 1994, 13, 1045. AKA090 Component in conductive coatings.1
Catalyst for polyesters.2
Employed in high voltage breakdown ZnO varistors.3 1. Yamada, K. Chem. Abstr. 111, 88785d; Jap. Patent 63 310 970, 1988.
2. Otton, J. et al. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3535; 1988, 26, 2199.
3. Westin, G. et al. J. Mater. Chem. 1994, 4, 615. AKA100 F&F: Vol. 17, p 204. AKA115 Employed in doped CVD of silicon dioxide.1 1. Becker, F. et al. J. Electrochem. Soc. 1989, 136, 3033. AKB119 Yields BaF2 fluoride glasses by MOCVD using HF carrier gas.1 1. Fujiura, K. et al. U.S. Patent 5,145,508, 1992. AKB120 Employed in sol-gel synthesis of superconductors.1 1. Ravindranathan. P. et al. J. Mater. Res. 1988, 3, 810. AKB130 Intermediate for barium titanate films by sol-gel.1
Forms catalytically active perovskite mixed oxides utilized as combustion catalyst.2 1. Gust, M. et al. J. Am. Ceram. Soc. 1997, 80, 2828.
2. Tanaka, H. et al. Jap. Pat. 08217461, 1996. AKB140 Intermediate for sol-gel derived superconductors.1 1. Kordas, G. et al. Mater. Lett. 1987, 5, 417. AKB144 Employed in MOCVD of superconductor films.1,2,3 1. Tsuroka, T. Appl. Phys. Lett. 1989, 54, 1808.
2. Barron, A. et al. Electrochem. Soc. 177th Mtg., Abstract 943, 1990.
3. Kanehori, K. et al. Thin Solid Films 1989, 182, 265. AKB150 Forms β-diketonate polymers by substitution reactions.1 1. Wilkins, J. U.S. Patent 2,659,711, 1953. AKB153.8 Crosslinker for epoxy resins in combination with pyrocatechol.1 1. Arada, B. et al. J. Polym. Mater. 1979, 7, 167. AKB154 Catalysis with Pd(PPh3)4 affords allylic alkylation of carbon nucleophiles.1 1. Liu, X. J. Organomet. Chem. 1988, 344, 109. AKB155 Used in sol-gel prep of Li2B4O7 with potential for surface acoustical wave (SAW) devices.1 1. Yoko, T. et al. in Sol-Gel Optics, Mackenzie, J., Ed. SPIE Proc. 1990, 1328, 416. AKB156.2 Intermediate for organic-modified borosiloxanes.1 1. Sorar, G. et al. Chem. Mater. 1999, 11, 910. AKB156.4 Forms electroluminescent devices emitting at 495-500 nm.1 1. Wu, Q. et al. Chem. Mater. 2000, 12, 79. AKB156.5 Undergoes selective reaction with Grignard reagents to form dialkylborinates.1 1. Cole, T. et al. Organometallics 1992, 11, 652. AKB157 Forms doped glasses for laser oscillators and optical memory devices.1
Forms borophosphosilicate glasses by CVD.2
Reagent for derivatizing carbohydrates for GC analysis.3
Precursor to boronic acids used in Suzuki-Miyaura cross-coupling.4,5,6 1. Jpn. Kokai Tokkyo Koho JP 04,193,722, 1992; Chem. Abstr. 117, 218481p.
2. Rojas, S. et al. J. Vac. Sci. Technol., B 1992, 10, 633.
3. Reinhold, V. et al. Carbohyd. Res. 1974, 37, 203.
4. Boronic Acids, Hall, D. G. Ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany ISBN 3-527-3099
5. Leermann, T.; Leroux, F. R.; Colobert, F. Org. Lett. 2011, 13, 4479.
6. Wang, X.-J. et al. Org. Lett. 2006, 8, 305. AKB157.1 Gas flux for brazing.1 1. Phillips, A. In Welding Handbook, American Welding Soc. 1959. AKC159.8 Forms CdS films for solar cells by thermal decomposition >350°.1
Forms CdS nanowires on treatment with ethylenediamine at 117°C.2
In combination with (EtO)4Si forms SiO2∙CdS nanocomposites.3 1. Tsuji, M. et al. Jpn. Patent 10 284,744, 1997; Chem. Abstr. 129, 333306.
2. Yan, P. et al. Chem. Comm. 1999, 1293.
3. Monteiro, O. et al. Chem. Mater. 2002, 14, 2900. AKC163 Employed in CVD of superconductors.1 1. Nemota, M. et al. J. Mater. Res. 1990, 5, 1. AKC167 Employed as a protective coating for silicon carbide fibers in titanium composites.1
Preferred intermediate for bioactive soft gel-glasses.2 1. Gundel, D. et al. J. Mater. Sci. 1994, 29, 1795.
2. Ramila, A. et al. Chem. Mater. 2002, 14, 542. AKC172 Employed in MOCVD of thin film superconductors.1,2
Forms CaS with H2S <450° suitable for electroluminescent phosphors.3 1. Kobayashi, K. et al. Chem. Lett. 1989, 1415.
2. Richeson, D. et al. Appl. Phys. Lett. 1989, 54, 2154.
3. Rautanen, J. et al. Appl. Surf. Sci. 1994, 82/83, 553. AKC180 Forms diketonates which hydrolyze to CeO2 particles with potential for ion conduction.1
Sol-gel derived CeO2-TiO2 coatings employed for Li+ ion storage in electrochromics.2
Catalyzes diastereoselective pinacol couplings.3 1. Ribot, F. Chem. Mater. 1991, 3, 759.
2. Macedo, M. et al. MRS Proc. C4.3, April 1992.
3. Grotin. V. et al. Angew. Chem., Int. Ed. Engl. 2000, 39, 574. AKC186 Forms catalytic ceria aerogels.1 1. Dunn, B. et al. J. Non-Cryst. Solids 2008, 354, 5509. AKC190 Catalyst for condensation of silanol terminated siloxanes.1
Catalyst for polyether terephthalate.2 1. Chem. Abstr. 82: P5224d; USSR Patent 393,920, 1974.
2. Carlson, O. U.S. Patent 3,332,671, 1970. AKC191 Employed in ALD of mixed CeO2-Y2O3 thin layer ionic conductors.1 1. Ballee, E. et al. Chem. Mater. 2009, 21, 4614. AKC210 Catalyst in CH3CN for H2O2 oxidation of methacrylic esters to pyruvate esters.1
Yields film and fiber forming compositions upon substitution reactions with diphenylphosphinic acid.2
Forms oxygen rich chromium oxide films by MOCVD, which convert to epitaxial Cr2O3.3
Vapor phase transport facilitated with NH3.4 1. Enomoto, S. Chem. Abstr. 112, 1386139; Jpn. Patent 01 349,745, 1989.
2. Block, B. et al. J. Am. Chem. Soc. 1962, 84, 1749.
3. Boorse, R. et al. Chem. Mater. 1994, 6, 1509.
4. Zhang, J. et al. J. Appl. Phys. 1992, 71, 2769. AKC230 F&F: Vol. 16, p 26; Vol. 17, p. 87. AKC235 Cocatalyst for the polymerization of dienes.1
Catalyst for the polymerization of propylene oxide.2
Photoinitiator.3
Component in preparation of light sensitive photographic materials.4 1. Blackley, D. et al. ACS Symp. Ser. 1976, 24, 162.
2. Hsieh, H. J. Appl. Polym. Sci. 1971, 15, 2425.
3. Kaeriyama, K. et al. Makromol. Chem. 1973, 167, 129.
4. Fuji Photo Chem. Abstr. 85, 54641h; U.S. Patent 3,933,488, 1976. AKC238 F&F: Vol. 9, p 119; Vol. 10, p 102; Vol. 11, p 138. AKC240 Precursor for conductive Sr-Co-Fe ceramic films.1 1. Xiao, C. et al. J. Mater. Res. 1998,13, 173. AKC246 Component in photodefinable dielectric layers.1 1. Brown, P. et al. U.S. Patent 5,326,671, 1994. AKC248 Employed in preparation of superconductors.1 1. Druliner, J. et al. Chem. Abstr. 113, P16325x; PCT Int'l App. WO 90 00,154, 1990. AKC250 Employed in preparation of superconductors by sol-gel.1 1. Uchikawa, F. J. Mater. Res. 1989, 4, 787. AKC252 PECVD source of copper.1 1. Hwang, S. et al. J. Mater. Res. 1996, 11, 1051. AKC252.7 MOCVD source of Cu2O with potential in solar energy applications.1
MOCVD source of Cu seed layer.2 1. Hampden-Smith, M. et al. 202nd ACS Nat'l Mt'g Abstr. 1991, 144.
2. Lee, W. et al. J. Vac. Sci. Technol., A 2001, 19(6), 2974. AKC252.8 High deposition rate, stable, optimized precursor for copper.1,2,3 1. Kaloyeros, A. et al. U.S. Patent 6,037,001, 2000.
2. Burke, A. et al. J. Appl. Phys. 1997, 82, 4651.
3. Braeckelmann, G. et al. J. Vac. Sci. Technol. B 1996, 14, 1828. AKC253 Employed in CVD of superconductors.1
Catalyst for addition of diazopentanediones to aldehydes and ketones to form dioxoles.2
Cu thin films deposited with H2 at 250°.3,4,5
Forms ferromagnetic chains on photolysis with diazodi-4-pyridylmethane.6 1. Nemota, M. et al. J. Mater. Res. 1990, 5, 1.
2. Alonso, M. et al. J. Org. Chem. 1985, 50, 3445.
3. VanHemert, R. et al. J. Electrochem. Soc. 1965, 112, 1123.
4. Mosher, R. et al. U.S. Patent 3,356,527, 1967.
5. Eisenbraun, E. et al. In Advanced Metallization for ULSI Applications, 1992, Cale, T. et al. Ed.;MRS, 1993, p. 107.
6. Sano, Y. et al. J. Am. Chem. Soc. 1997, 119, 8246. AKC254 Reacts with carbon monoxide in pyridine at 35-70° to produce dimethylcarbonate.1 1. Saegusa, T. et al. J. Org. Chem. 1970, 35, 2976. F&F: Vol. 4, p 107. AKC255 Forms clear green gels on hydrolysis.1
Forms Y-Ba-Cu-O ceramics.2 1. Houk, C. et al. In Better Ceramics Through Chemistry, VI, Cheetham, A. et al. Ed.; MRS 346, 1994, p29.
2. Goel, S. et al. Inorg. Chem. 1989, 28, 3619. AKC260 Catalyst for the reduction of nitro-aromatics with NaBH4.1
Catalyst for hydrogenation of unsaturated fats.2
Catalyst for flexible urethanes.3
Excimer laser induces deposition of copper.4
MOCVD generates copper oxide films.5
Forms ferromagnetic chains on photolysis with diazodi-4-pyridylmethane.6 1. Hanaya, K. et al. J. Chem. Soc., Perkin Trans. 1979, 1, 2409.
2. Emken, E. et al. J. Am. Oil Chem. Soc. 1966, 43, 14.
3. Chem. Abstr. 68, 3566d; Fr. Patent 1,481,815, 1968.
4. Jones, C. et al. Appl. Phys. Lett. 1985, 46, 97.
5. Ryabova, L. In Current Topics in Material Science Kaldis, E. Ed. 1981, 7, 598.
6. Sano, Y. et al. J. Am. Chem. Soc. 1997, 119, 8246. AKC261 Forms hole injection layers in light emitting devices.1,2 1. Van Slyke, S. et al. Appl. Phys. Lett. 1996, 69, 2160.
2. Parthasarthy, G. et al. Appl. Phys. Lett. 1998, 72, 2138. AKC262 Employed in MOCVD of CuO.1,2
Employed in MOCVD of superconductors.3 1. Zhang, K. et al. Appl. Phys. Lett. 1989, 55, 1258.
2. Watanabe, K. et al. Appl. Phys. Lett. 1989, 54, 575.
3. Sakai, H. et al. J. Mater. Res. 1993, 8, 2143. AKC263 Forms lithium phenylthioalkyl cuprates from lithium alkyls.1 1. Corey, E. J. et al. Tetrahedron Lett. 1979, 4597. AKE275 Used to prepare Er doped silicon by CVD in combination with SiH4 at 650° at 0.001 mm.1 1. Beach, D. et al. Mater. Res. Soc. Proc. 1993, 282, 397; Eur. Patent Application 480110, 1993. AKE276 Forms organic light-emitting diodes with 1.5 nm electroluminesence.1 1. Curry, R. et al. Appl. Phys. Lett. 1999, 75, 1380. AKE277 Candidate for sol-gel derived hybrid aluminosilicate optical waveguides.1 1. Milova, G. et al. Proc. SPIE-Int'l Soc. Opt. 1997, 2997. AKE286.5 Forms red LEDs in combination with blue emitting conjugated polymers.1,2 1. McGehee, M. et al. Adv. Mater. 1999, 11, 1349.
2. Uekawa, M. et al. Synth. Met. 1997, 91, 259. AKE287 Improves rate and endo-selectivity of cyclopentadiene with allenic esters in Diels-Alder reactions.1,2
NMR shift reagent.3
Catalyzes the addition of silyl ketene acetals to aldehydes with high diastereoselectivity.4 1. Gandhi, R. et al. J. Chem. Soc., Chem. Comm. 1988, 1074.
2. Alonso, I. et al. J. Org. Chem. 1993, 58, 3231.
3. Wenzel, T. et al. J. Am. Chem. Soc. 1980, 102, 5903.
4. Terada, M. et al. Chem. Lett. 1992, 21, 29. F&F: Vol. 12, p 559; Vol. 15, p. 355. AKE290 Irradiation induces fluorescent emission.1 1. Sinka, S. In Complexes of Rare Earths, Pergammon, 1968. AKE295 Yields photoluminescent films by MOCVD.1 1. West, G. et al. J. Mater. Res. 1990, 5, 1573. AKE297 Highly luminescent laser dye.1,2
Temperature dependent fluorescent emission from -38° to +50°.3
Forms red light emitting devices.4
Employed as fluorescent thermal transfer from video screen.5 1. Matthews, L. et al. Chem. Mater. 1993, 5, 1697.
2. Lempicki, A. et al. Appl. Phys. Lett. 1963, 2, 159.
3. Kolodner, P. U.S. Patent 4,455,741, 1984; Appl. Phys. Lett. 1983, 42, 117.
4. Kido, J. et al. J. Alloys Compds. 1993, 192, 30.
5. Byers, G. et al. U.S. Patent 5,006,503, 1991. AKG300 Catalyst for polymerization of propylene oxide.1 1. Matsuda, F. Kidorai 1996, 29, 306; Chem. Abstr. 126, 60170k, 1997. AKG308 Employed in blue-green OLEDs.1,2 1. Sapochak, L. et al. Polym. Mater. Sci. Eng. 1995, 72, 331.
2. Schlaf, R. et al. J. Appl. Phys. 1999, 86, 5678. AKG320 Cohydrolysis with Te alkoxides on PMMA yields heat-mode erasable optical memory.1 1. Kunigi, M. et al. Jpn. Kokai Tokkyo Koho, 6212550, 1985; Chem. Abstr. 107, 208962. AKG321 In combination with NH3 forms gallium oxynitride films on pyrolysis.1 1. Kisailus, D. et al. J. Mater. Res. 2002, 17, 2540. AKH325 Chemisorption by sol-gel spin-on methods yields high k films.1 1. Aoki, Y. et al. Chem. Mater. 2005, 17, 450. AKH325.1 Sintering aid for Si3N4 used in gas turbines.1
Efficient catalyst for direct esterification of carboxylic acids with alcohols.2 1. Hirata, T. Jpn. Kokai Tokkyo Koho 07 133,158, 1993; Chem. Abstr. 123, 235931.
2. Ishihara, K. et al. Science 2000, 290, 1140. AKH326 Employed in CVD of HfO2 gates.1 1. Choi, K. et al. J. Mater. Res. 2003, 18, 60. AKH330 Employed in preparation of refractory hafnia coatings.1 1. Sim, S. et al. In Ultrastructure Processing of Advanced Ceramics, McKenzie, Ed. Wiley, 1988, p 995. AKH333 Employed in CVD of HfO2.1
Used in atomic layer deposition (ALD) of hafnium oxide layers.2 1. Williams, P. et al. J. Mater. Chem. 2002, 12, 165.
2. Kukli, K. et al. Chem. Mater. 2003, 15, 1722. AKI362.2 Employed in spray CVD or spray pyrolysis of I-III-IV semiconductors.1 1. Banger, K. et al. Inorg. Chem. 2003, 42, 7713. AKI370 Forms clear electrically conductive films.1 1. Adachi, M. Chem. Abstr. 113, 214050s; Jpn. Patent 02 192,616, 1990. AKI378 Forms iridium films by CVD in combination with O2.1
Catalyst with AlI3 for isomerization of saturated carboxylic acids.2 1. Sun, Y. et al. Mater. Res. Soc. Symp. 1999, 541, 101.
2. Burke, P. et al. Eur. Patent 639,555 1995; Chem. Abstr. 123, 113055. AKI380 Catalyst for hydrogenation of sulfur-containing aromatics.1
Reacts with phenylpyridine to give strong photoreducing agent.2 1. Chem. Abstr. 83, P96680j; German Patent 2,438,366, 1975.
2. Dedejan, K. et al. Inorg. Chem. 1991, 30, 1685. AKI396.5 Precursor for CVD of orientable nanocrystalline magnetite films.1 1. Mathur, S. et al. Chem. Vap. Dep. 2002, 8, 277. AKI398 Catalyst for coupling of alkenyl halides with Grignards.1 1. Neumann, S. M. and Kochi, J. K. J. Org. Chem. 1975, 40, 599. AKI400 Intermediate for sol-gel derived ferrites with magnetic properties.1
With Pt(acac)2 (AKP610) forms FePt nanoparticles by pyrolysis.2 1. Maccrone, R. et al. In Ultastructure Processing of Advanced Ceramics, Mackenzie, D. Ed. Wiley, 1988.
2. Saita, S. et al. Chem. Mater. 2005, 17, 3705. AKI410 Catalyst for selective epoxidation of cholesterol with H2O2.1
Intermediate for ferrites by sol-gel.2
In combination with polyamic acids forms magnetic films.3
Forms magnetic nanocrystals on reflux in pyrollidone.4 1. Tohma, M. et al. Tetrahedron Lett. 1973, 4359.
2. Higuchi, K. et al. Adv. Ceram. Mater. 1986, 1, 104.
3. Bergmeister, J. Chem. Mater. 1990, 2, 640.
4. Li, Z. et al. J. Mater. Res. 2004, 16, 1391. AKI411 Undergoes electron transfer reactions at polymer interfaces.1 1. Leidner, C. et al. J. Am. Chem. Soc. 1984, 106, 1606. AKI412 Forms oriented barium ferrite films on alumina.1 1. Pignard, S. et al. J. Phys. IV 1997, 7(C1), 483. AKL420 Intermediate for high purity mixed metal fluoride powders by treatment with BrF3.1
Complex with (5,5)-phenyl-linked binaphthol catalyzes 1,4 addition of malonates to enones.2 1. Melling, P. et al. J. Mater. Res. 1990, 5, 1092.
2. Park, S,-Y. et al.Tetrahedron Lett. 2007, 48, 2815. AKL424 With yttrium analog, forms LaYO3 exhaust catalysts by sol-gel.1
With Al(OsBu)3 forms oxidation resistant LaAl11O18 coatings by CVD.2 1. Jansson, K. et al. Adv. Sci. Trend 1999, 14, 159.
2. Jero, P. et al. Ceram. Eng. Sci. Proc. 1998, 19, 359. AKL430 Intermediate for sol-gel derived superconductors.1
Intermediate for La2Ti2O7 ferroelectrics.2 1. Kordas. G. et al. Mater. Lett. 1987, 5(11), 417.
2. Prasadaro, A. et al. J. Mater. Res. 1992, 7, 2859. AKL454 Sublimes as hexamer, hexamer in benzene.1 1. Bain, M. Can. J. Chem. 1964, 42, 945. AKL459 F&F: Vol. 9, p 283. AKM500 Component in olefin polymerization systems.1,2
Potential intermediate for synthetic forsterite, Mg2SiO4.3 1. Melquist, J. et al. U.S. Patent 4,199,476, 1980.
2. Job, R. U.S. Patent 4,874,737, 1989.
3. Yeager, K. et al. Chem. Mater. 1991, 3, 387. AKM503 Forms adherent MgO films utilized for magnetic core windings.1
Dielectric constant (e.g. 7.0) and optical properties of sol-gel derived MgO studied.2
Employed in production of fluorophlogopite.3
Deacidifies paper.4
Forms highly absorbent aerogels.5
Reviewed for preparation and synthetic applications.6 1. Suchoff, L. U.S. Patent 2,796,364, 1957.
2. Ho, I. et al. J. Sol-Gel Sci. & Tech. 1997, 9, 295.
3. Duldulao, F. et al. Chem. Mater. 1991, 3, 772.
4. Kelly, G. et al. Adv. Chem. Ser. 1977, 164, 62.
5. Klabunde, K. et al. J. Am. Chem. Soc. 2000, 122, 4921.
6. Shimizu, M. Science of Synthesis, 2004, 7, 645. F&F: Vol. 2, p 255; Vol. 3, p 189; Vol. 7, p 220; Vol. 11, p 309. AKM506 Mild carboxylating agent for nitro and carbonyl compounds.1,2 1. Finkbeiner, H. J. Org. Chem. 1963, 28, 215.
2. Cate, L. A. Synthesis 1983, 385. F&F: Vol. 1, p 631. AKM510 Catalyst for thickening reactions of polyesters.1
Catalyst for polymerization of olefins.2 1. Judas, D. et al. J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 3309.
2. Chem. Abstr. 102, 25240; Can. Patent 1,175,034. AKM524 Employed in thin film deposition of magnesium fluoride.1 1. Joosten, P. et al. J. Appl. Optics 1985, 24, 2674. AKM545 Reacts with alkenes to form 4-acetyl-3-methyl-1,2-dioxan-3-ols.1 1. Nishino, H. et al. Bull. Chem. Soc. Jap. 1991, 64, 1800. AKM546 Employed in ALD of YMnO3 films.1 1. Uusi-Esko, K. et al. Chem. Mater. 2009, 21, 5691. AKM547 Catalyst for direct episulfidation of E-cycloolefins with sulfur.1sup> 1. Adam, W. et al. J. Chem. Soc., Chem. Commun. 2001, 1910. AKM550 With AlCl3 catalyzes metathesis of acetylenic hydrocarbons.1
Derivative employed in enantioselective epoxidation of allyl alcohol.2
Forms homogeneous catalyst system with Et3Al yielding syndiotactic 1,2-butadienes.3 1. Bage, S. et al. J. Mol. Catal. 1990, 59, 225.
2. Coleman, S. et al. J. Organomet. Chem. 1983, 246, 53.
3. Nata, G. J. Polym. Sci. 1960, 48, 219; Belg. Patent 549,554, 1959. AKN560 Forms ferroelectric titanates.1 1. Prasadaro, A. et al. Mater. Lett. 1991, 12, 306. AKN580 Catalyzes conjugate addition of alkynyl aluminums to enones.1
Catalyzes coupling of Grignard reagents to give biaryls.2
Catalyzes Grignard additions to silyl enol ethers forming alkenes.3
Thermochromic effect in non-coordinating solvents at 200°C.4
UV stabilizer for polyphenylene sulfide.5
Catalyzes coupling of dialkylzincs with alkyl iodides.6
Intermediate for Ni nanoparticles by reduction with NaBH4.7
Forms Ni3C nanocrystals by thermolysis in oleylamine.8 1. Hansen, R. T. et al. J. Am. Chem. Soc. 1978, 100, 2244.
2. Clough, R. L. J. Org. Chem. 1976, 41, 2252.
3. Hayashi, T. et al. Tetrahedron Lett. 1980, 3915.
4. Cotton, F. et al. J. Am. Chem. Soc. 1961, 83, 2818.
5. Stahlke, K. Chem. Abstr. 114, 144761u; Eur. Patent Application 326,888, 1989.
6. Giovannini, G. R. et al. J. Org. Chem. 1999, 64, 3544.
7. Green, M. et al. J. Chem. Soc., Chem. Commun. 2001, 1912.
8. Goto, Y. et al. Chem. Mater. 2008, 20, 4156. AKN584 F&F: Vol. 17, p 40. AKN588 Forms microporous silica-niobia membranes by cohydrolysis with tetraethoxysilane.1 1. Boffa, V. et al. J. Membr. Sci. 2008, 318, 256. AKN590 Intermediate for sol-gel perovskites.1
Intermediate for lead magnesium niobates.2
Intermediate for acentric piezoelectric LiNbO3 films.3
Forms ferroelectric films in combination with strontium and barium alkoxides.4
In combination with aminopropyltriethoxysilane (SIA0610.0) forms niobia analog of molecular sieves.5 1. Hayes, J. et al. Mater. Lett. 1987, 5(10), 396.
2. Ravindranathan, P. et al. Mater. Lett. 1989, 8(5), 161.
3. Einhurst, D. In Better Ceramics Through Chemistry III, Brinker, C. Ed.; MRS p 773.
4. Xu, R. et al. J. Mater. Res. 1990, 5, 916.
5. Antonelli, D. et al. Angew. Chem., Int. Ed. Engl. 1996, 35, 426. AKP595 Forms Pd and Pd/Cu films by MOCVD.1,2 1. Lin, W. et al. J. Am. Chem. Soc. 1993, 115, 11644; 1996, 118, 5477.
2. Bhaskaran, V. et al. Mater. Res. Soc. Symp. 1996, 427, 231. AKP600 Sol-gel reaction with (EtO)4Si yields PdO-SiO2 composite xerogels.1
Photoactivated hydrosilylation catalyst.2 1. Schubert, U. et al. Chem. Mater. 1989, 1, 576.
2. Lewis, F. et al. Inorg. Chem. 1995, 34, 3182. F&F: Vol. 6, p 45; Vol. 17, p 264. AKP610 Oxidative addition product with I2 photodissociates in CCl4.1
With Fe(CO)5 forms high coactivity nanoparticles suitable for magnetic storage.2
Catalyst for photopatterned carboxosilanes employed as sensors.3
Forms Pt 3d-Transition Metal Nanocubes in presence of W(CO)6.4 1. Cook, P. et al. J. Chem. Soc., Dalton Trans. 1973, 294.
2. Sun, S. et al. Science 2000, 287, 1989.
3. Grate, J. et al. Chem. Innovation 2000, 30(11), 29.
4. Zhang, J. et al. J. Am. Chem. Soc. 2009, 131, 18543. AKP630 Catalyst, reactant for condensations, isomerizations, dehydrohalogenation- reviewed.1 1. F&F: Vol. I, p 911-927; Vol. 2, p 336; Vol. 3, p 233. AKP640 F&F: Vol. 1, p 928. AKP647 More soluble strong base similar to potassium tert-butoxide. Used in synthesis of substituted xanthenes.1
Employed in the preparation of a carbene ruthenium catalyst for olefin metathesis.2 1. Zavialov, I. A. et al. Org. Lett. 2004, 6, 2237.
2. Jaafpour, L. Hillier, A. C.; Nolan, S. P. Organometallics 2002, 21, 442. AKP648 Coreactant with hydroxylamine hydrochloride for conversion of ketones to oximes.1 1. Pearson, D. et al. J. Org. Chem. 1963, 28, 1557. AKP654 Ionic.1 1. Arnett, E. et al. J. Am. Chem. Soc. 1976, 98, 7447. AKR663 Employed in preparation of rhodium films by PECVD.1 1. Etspuler, A. et al. Appl. Phys. A 1989, 48, 373. AKR665 Catalyst with hydroxypyridine for formation of ethylene glycol from CO/H2.1
Oxidizes alkanes to trifluoroacetyl esters with H2O2/CF3CO2H.2 1. Duranleau, L. U.S. Patent 4,421,863, 1983.
2. Nomura, K. et al. J. Chem. Soc., Chem. Commun. 1994, 129. AKR670 Intermediate for RuO2∙TiO2 ceramics.1 1. Colomer, T. et al. Chem. Mater. 2000, 12, 923. AKS676 Potential component in sol-gel derived anisotropic piezoelectric lead titanates.1
In combination with Shiff base ligand catalyzes asymmetric nitro-Mannich reaction.2 1. Duran, P. J. Mater. Sci. Lett. 1991, 10, 917.
2. Handa, S. et al. J. Am. Chem. Soc. 2007, 129, 4900. AKS687 Employed in laser fluorimetry.1 1. Yamada. S. et al. Anal. Chim. Acta 1982, 134, 21. AKS704 Stabilizer for photosensitive resins.1 1. Hosaka, Y. et al. Chem. Abstr. 91, 166399. AKS720 Reagent for the detection of arsenic.1 1. Powers, G. W. et al. Anal. Chem. 1959, 31, 1589. AKS725 Component in low-cost glass-frit extended silver conductive pastes.1 1. Murashima, H. et al. Chem. Abstr. 106, 112172w; Jpn. Patent 61 203,502, 1986. AKS726 Intermediate for ion conducting network polymers.1
Reducing agent.2 1. Doan, K. et al. Chem. Mater. 1991, 3, 418.
2. Bazant, V. et al. Tetrahedron Lett. 1968, 3303. F&F: Vol. 2, p 382; Vol. 3, p 260; Vol. 4, p 441; Vol. 5, p 596; Vol. 6, p 528. AKS730 In combination with n-BuLi in THF forms "super base".1 1. Lipshutz, B. et al. Tetrahedron Lett. 1990, 7, 227. AKS733 Modifies nickel surfaces, providing organic compatibility.1 1. Zhang, J. et al. J. Mater. Res. 2000, 15, 541. AKS735 F&F: Vol. 6, p 539. AKS760 F&F: Vol. 1, p 1091; Vol. 2, p 385. AKS761 Reagent for nucleophilic displacement, condensation catalyst, etc.1 1. F&F: Vol. 1, p 1091; Vol. 2, p 385; Vol. 3, p 259. AKS762 Catalyst for anionic polymerization of methyl methacrylate.1 1. Tomoi, M. et al. Polym. J. 1974, 6, 438. AKS768 Effective base for the alkylation of ketones.1 1. Conia, J. Record of Chemical Progress 1963, 24, 43. F&F: Vol. 1, p 1096. AKS775 Orthorhombic structure with only one alkali-metal coordination sphere.1
Inserts carbon dioxide to form sodium salicylate (Kolbe-Schmitt reaction).2 1. Dinnebier, R. et al. Inorg. Chem. 1997, 36, 3398.
2. Boullard, O. et al. In Ullman's Encyclopedia of Industrial Chem., 5th ed. 1993, A23, 478. AKS786 Employed in CVD of superconductors.1 1. Nemota, M. et al. J. Mater. Res. 1990, 5, 1. AKS793 Component in sol-gel derived thin-film superconductors.1 1. Wandass, J. et al. AIP Conf. Proc. 1990, 200, 157. AKS802 In combination with Ti(OiPr)4 yields SrTiO3 thin films by MOCVD.1 1. Feil, W. et al. In Chem. Vap. Dep. of Refractory Metals & Ceramics, Besman, Ed.; MRS, 1990, p 375. AKT810 Employed in sol-gel synthesis of bulk and thin film Ta2O5 as a capacitor dielectric.1
Employed in sol-gel synthesis of lithium tantalate ferroelectrics.2
Forms chiral complexes with substituted trialkanolamines useful in asymmetric catalysis.3
Employed in low-pressure CVD of optical interference filters.4 1. Ling, H. et al. In Science of Ceramic Processing, Hench, Ed.; Wiley 1986.
2. Pluré, P. J. Mater. Res. 1993, 8, 334.
3. Nugent, W. et al. J. Am. Chem. Soc. 1994, 116, 6142.
4. George, M. et al. Vacuum Techn. Sci. 2000, 22. AKT818.5 Precursor for Pb(ScTa)1-xTixO3 (PSTT) films by MOCVD.1 1. Lin, C. et al. Tarakang J. Sci. Eng. 2002, 5, 1. AKT819 Forms heat-mode erasable optical disk memory compositions.1 1. Kunugi, M. et al. Chem. Abstr. 107, 208962a; Jpn. Patent 62 125,550, 1987. AKT820 Forms green light emitting devices.1 1. Kido, J. et al. J. Alloys Compds. 1993, 192, 30. AKT825 Ethoxide displaced by mercaptans to yield thio ether intermediates.1 1. Freeman, J. Organic Syntheses; Wiley & Sons: New York, 1990; Collect. Vol. 7, 81. AKT830 Forms thallium oxide films by MOCVD with potential solar applications.1 1. Berry, A. et al. Chem. Mater. 1991, 3, 72. AKT840.5 MOCVD doping of zinc sulfide films gives blue photoluminescence.1 1. Hara, K. et al. Jpn. J. Appl. Phys., Part 2 1992, 31, 1661. AKT850 Forms KTP (potassium titanylphosphates) with KOEt and phosphate esters.1
Improves adhesion of polyethylene extruded onto aluminum.2 1. Barbé, C. et al. J. Sol.-Gel Sci. Technol. 1997, 9, 183.
2. Brill, H. C. U.S. Patent 3,002,854, 1962. AKT850.2 Improves adhesion of polyethylene extruded onto aluminum.1 1. Brill, H. C. U.S. Patent 3,002,854, 1962. AKT850.5 Catalyst component for olefin polymerization.1
Highly active catalyst for alcoholysis of silane esters.2 1. Morini, G. et al. PCT Int'l WO 2004085495.
2. Khonina, T. et al. Russ. J. Chem. 1997, 67, 79. AKT851 Reagent for conversion of carbanions and enolates to titanates with stereoselectivity.1,2
Provides benzyltriisopropoxytitanium compounds suitable for cross-linking to form diarylmethanes or aryl-heteroarylmethanes.3
Employed in the enantioselective arylation of aldehydes.4 1. Seigel, C.; Thornton, E. R. Tetrahedron Lett. 1986, 27, 457.
2. Nerz-Stonies, M.; Thornton, E. R. Tetrahedron Lett. 1986, 27, 897.
3. Chang, S-T. et al. Tetrahedron, 2012, 68, 3956.
4. Uenishi, A. et al. Chem. Eur. J. 2013, 19, 4896. F&F: Vol. 11, p 375; Vol. 14, p 87. AKT855 Employed in formation of mixed and pure TiO2 by sol-gel.1 1. LaCourse, W. In Sol-Gel Technology, Klein, L. Ed. Noyes 1988, p. 184. AKT860 Hydrolysis yields narrow distribution TiO2 particles suitable for sintering.1,2 1. Jean, J. et al. Langmuir 1986, 2, 251.
2. Ring, T. MRS Bull. 1990, 15, 34. AKT867 Controls TiO2 structure for low loss optical fibers.1 1. Yoshida, M. et al. Chem. Mater. 1996, 8, 235. AKT872 Vapor phase pyrolysis gives oxide.1
Yields coatings of barium titanate in combination with Ba(OR)2.2
Utilized in spray pyrolysis synthesis of BaTiO3 and SrTiO3.3
Catalyst for rearrangement4 and cleavage5 of epoxy alcohols.
Catalyst for cyclization of ω-amino acids to lactams.6
In combination with lead alkyls yields PZT films by MOCVD.7
Review of reactions in combination with Grignard reagents and various organic substrates.8
In combination with triethylamine and trimethylchlorosilane extends aldehydes to two carbons to enals.9 1. Nandi, M. et al. Inorg. Chem. 1990, 29, 3065.
2. Scuhoff, L. U.S. Patent 3,002,861, 1961.
3. Nonaka, S. et al. J. Mater. Res. 1991, 6, 1750.
4. Morgans, D. et al. J. Am. Chem. Soc. 1981, 103, 462.
5. Caron, M. et al. J. Org. Chem. 1985, 50, 1557.
6. Mader, M. et al. Tetrahedron Lett. 1988, 29, 3049.
7. Kwak, B. S. et al. Appl. Phys. Lett. 1988, 53, 1702.
8. Wolan, A.; Six, Y. Tetrahedron 2010, 66, 15.
9. Kagana, N. et al. Tetrahedron Lett. 2010, 51, 482. F&F: Vol. 6, p. 11; Vol. 10, p. 404; Vol. 11, p. 3724 Vol. 12, p. 19, 504; Vol. 13, p. 13; Vol. 14, p. 247, 311; Vol. 16, p. 339; Vol. 17, p. 347. AKT875 Forms protective coatings on ink-jet printer heads.1
Intermediate for nanostructured titanium phosphate.2
Forms titania structures by biologically mediated assembly.3 1. Jpn. Kokai Tokkyo Koho 58 134,164, 1983
2. Cole, K. et al. Chem. Mater. 2006, 18, 4592.
3. Fang, Y. et al. Chem. Mater. 2009, 21, 5704. AKT880 Photocatalytic TiO2 films prepared by ALD in combination with H2O.1 1. Pore, V. et al. Chem. Vap. Dep. 2004, 10, 143. AKT881 Employed in preparation of SrTiO3, BaTiO3, CaTiO3 by sol-gel.1
Adhesion promoter for wire enamels.2
Forms homogeneous catalysts with Et3Al2Cl3 for oligomerization of α-olefins.3 1. Ali, N. et al. In Better Ceramics Through Chemistry III, Brinker, Ed. 269, 1988.
2. Cynkovska, G. PCT Int'l WO9203831, 1992; Chem. Abstr. 117, 50898d.
3. Tenbe, G. et al. Ind. Eng. Chem. Res. 1991, 30, 2247. AKT889.1 Dispersion agent for conductive fillers in capacitance discs.1 1. Labib, M. U.S. Patent 4,532,074, 1985. AKT890 Component in polymer solar cells formed at room temperature.1 1. Chen, L. et al. Adv. Funct. Mater. 2014, 24, 3986. AKV898 Forms nanocrystalline V2O5 thin films by PE-CVD.1 1. Barreca, D. et al. Chem. Mater. 2000, 12, 98. AKV900 Forms electrically conductive VO2 coatings.1
Stereospecific oxidation of olefins in combination with t-butylhydroperoxide.2,3
Catalyst for preparation of amine oxides.4
In combination with BiPh3 yields bismuth vanadate catalysts by CVD.5 1. Serbinov, I. Thin Solid Films 1975, 27, 171.
2. Sharpless, K. J. Am. Chem. Soc. 1973, 95, 6136.
3. Rossiter, B. et al. Tetrahedron Lett. 1979, 4733.
4. Sheng, M. et al. F&F: Vol. 2, p 456; J. Org. Chem. 1968, 33, 588.
5. Barreca, D. et al. Chem. Mater. 1999, 11, 255. AKV903 Employed in sol-gel synthesis of α-Bi2CO5.5.1 1. Fell, J. et al. Mater. Lett. 1995, 25, 157. AKV905 Employed in ethylene-propylene copolymerization.1 1. Ma, Y. et al. Organometallics 1999, 18, 2273. AKV910 Catalyst for the polymerization of olefins.1
Highly reactive intermediate for sol-gels with potential applications for humidity sensors and electrochromic display devices.2
Forms durable thermochromic gels with 10% Ge(OEt)4.3
Forms clear vanadia-silica aerogels able to polymerize acetylenes.4
Forms sol-gel derived Au dispersed electrochromic coatings.5
Forms xerogel cathodes for lithium polyelectrolyte cells.6
Vanadium-silica sol-gels with controlled microporosity for catalysts prepared.7
Sol-gel reaction with α,ω-diamines followed by hydrothermal treatment yields nanotubes.8
Forms flexible electrodes on block polymer matrices.9 1. Christman, D. J. Polym. Sci. A-1 1972, 10(2), 471.
2. Livage, J. et al. Prog. in Solid State Chem. 1988, 18, 259.
3. Hirashima, H. et al. J. Non-Cryst. Solids 1990, 121, 168.
4. Stiegman, A. et al. Chem. Mater. 1993, 5, 1591.
5. Nagase, K. J. Mater. Chem. 1984, 4, 1581.
6. Davies, A. et al. J. Mater. Chem. 1996, 6, 49.
7. Curran, M. et al. Chem. Mater. 1998, 10, 3156.
8. Curran, M. et al. Chem. Mater. 1999, 11, 1120.
9. Olivetti, E., et al. Chem. Mater. 2006, 18, 2828. AKV915 Hydrolysis in alcoholic medium yields transparent orange monolithic gels.1
Forms ductile mesoporous vanadia with diisocyanate-derived polymer.2 1. Sanchez, C. et al. In Better Ceramics Through Chemistry, III, Brinker, J. Ed. 1988, p 93.
2. Leventis, N. et al. J. Mater. Chem. 2008, 18, 2745. AKY921 Catalyst for Diels-Alder reactions with cycloalkenones.1 1. Fringuelli, F. et al. J. Org. Chem. 1988, 53, 4607. F&F: Vol. 15, p 356. AKY923.1 Degrades at 150° to YF3 for AR coatings.1 1. Masdiyasni, K. J. Less-Common Metals 1973, 30, 105. AKY925 Actual structure: Y5(O)(OiPr)13 .1
Intermediate for fabrication of YBa2Cu3O7 superconducting fibers.2
Intermediate for yttrium aluminum garnet films.3 1. Evans, W. et al. Inorg. Chem. 1988, 27, 4417.
2. Katayama, S. et al. J. Mater. Res. 1991, 6, 1629.
3. Hay, R. J. Mater. Res. 1993, 8, 578. AKY927 For preparation of superconductors by sol-gel.1
Efficient catalyst for living ring-opening polymerization of caprolactone.2
Candidate for composite film electrodes in solid fuel cells.3
Raw material for optical waveguides.4 1. Moore, G. et al. Mater. Lett. 1989, 7, 415.
2. McLain, S. et al. U.S. Patent 5,028,667, 1991.
3. Hayashi, K. et al. Proc. Electrochem. Soc. 1998, 97, 700.
4. Wu, Y. et al. Optical Materials 2004, 27, 21. AKY932 For preparation of luminescent films on glass.1
For preparation of superconductors by MOCVD.2 1. Dismukes, J. et al. U.S. Patent 3,894,164, 1973.
2. Norris, P. et al. Superconductor Ind. 1990, 3(1), 14. AKZ932.8 Precursor by thermal or photochemical CVD for ZnS films.1 1. Cheon, J. et al. J. Am. Chem. Soc. 1997, 119, 163; 1997 119, 3838. AKZ933.8 Higher electron mobility than Alq3 in OLEDs.1 1. Donze, N. et al. Chem. Phys. Lett. 1999, 315, 405. AKZ934 Catalyst component in oxirane polymerization.1 1. Kageyanna, H. et al. Makromol. Rapid Commun. 1982, 3, 947. AKZ935 Photostabilizer for polypropylene.1
In combination with Pd effects carbonylative coupling of boranes with aryl halides.2
Forms transparent conductive ZnO-In2O3 films.3 1. Cullis, C. Eur. Polym. J. 1990, 26, 919.
2. Wakita, Y. et al. J. Organomet. Chem. 1986, 301, C17.
3. Minami, T. et al. J. Vac. Sci. Technol., A 1997, 15, 1069. AKZ941 Coupling agent candidate for hydroxyapatite/polymer (bone analog) composites.1 1. Sousa, R. et al. Key Eng. Mater. 2002, 218-220 (Bioceramics), 496. AKZ945 Component in preparation of Pb(Zr,Ti)O3 fibers by sol-gel.1 1. Selvaraj, V. et al. J. Mater. Res. 1992, 7, 992. AKZ946 Employed in CVD of ZrO2.1
Couples carboxylic acids to aluminum (native oxide) surfaces.2
Reagent for preparation of tin(ll) and lead(ll) heterometallic alkoxides.3
Key component of catalyst for the enantioselective reaction of enol silyl ethers with aldimines.4 1. Gould, B. et al. J. Mater. Chem. 1994, 4, 1815.
2. Aronoff, Y. et al. J. Am. Chem. Soc. 1997, 119, 259.
3. Teff, D. et al. Inorg. Chem. 1996, 35, 2981.
4. Ishitani, H. et al. J. Am. Chem. Soc. 2000, 122, 8180. AKZ947.5 Catalyst component for polymerization of olefins.1 1. Mukoyama, M. et al. Jpn. Kokai Tokkyo Koho 05 170,819; Chem. Abstr. 120, 77905. AKZ948 Forms ZrO2 by CVD at 500°C.1 1. Jones, A. et al. J. Eur. Ceram. Soc. 1999, 19, 1431. AKZ951 Employed in high contrast video screens.1 1. Hou, T. et al. Key Eng. Mater. 1998, 150, 67. AKZ952 Catalyzes reaction between carboxylic acids and epoxides in resins.1 1. Blanc, W. et al. Proc. 28th Int'l Waterborne, High Solids & Powder Coating Symp., 297, 2001. AKZ953 Employed in the production of ZrF4 glass coatings by PECVD.1 1. Fujiura, K. et al. Jpn. J. Appl. Phys., Part 2 1991, 30, L1498. AKZ955 Employed in preparation of zirconium phosphates by sol-gel.1 1. Benhamza, H. et al. J. Mater. Chem. 1991, 1, 681. AKZ961 Employed in hybrid organic-inorganic gels.1 1. Sanchez, C. et al. J. Non-Cryst. Solids 1992, 147, 1. AKZ965 Sol-gel precursor for zirconium oxides used in plasma sprays.1
Intermediate for ZrO2 by CVD.2 1. NASA Tech Brief 9(1) Item JPL invention NPO-16228/5682.
2. Mazdiyansi, K. et al. USAF Report ASD-TDR-63-322, 1963. AKZ970 Employed in sol-gel derived PZTs with potential in holographic memories.1
Precursor for SrZrO3 combustion catalyst.2 1. Lin, C. et al. J. Mater. Res. 1992, 7, 2546.
2. Daturi, M. et al. Chem. Mater. 1995, 7, 2115. AKZ975 Employed in sol-gel production of lead zirconate titanate films.1
Employed in sol-gel coating of alumina powders used in composites.2
Employed in preparation of clear monolithic poly(tetramethylene oxide) ceramers.3
Catalyst for simultaneous polymerization and esterification.4
Component in high refractive index abrasion resistant coatings.5
Properties reviewed.6 1. Lipeles, R. et al. Science of Ceramic Proc. Hench, L. Ed. Wiley, 1986, p320.
2. Cortesi, P. et al. Ceramic Int'l. 1989, 15, 173.
3. Brennan, A. et al. J. Inorg. Organomet. Polym. 1991, 1, 167.
4. Case, L. U.S. Patent 3,383,217, 1964.
5. Philip, G. et al. U.S. Patent 4,746,366, 1988.
6. Day, V. et al. Inorg. Chem. 2001, 40, 5738. AKZ980 Forms zirconia thin films by CVD.1 1. Zhang, Y. J. Am. Chem. Soc. 1997, 119, 9295. AKZ985 Employed in MOCVD of zirconia films.1 1. Desu, S. et al. In Chemical Vapor Deposition of Refractory Metals Besman, T. et al. Eds.; MRS Proc. 1990, 168, 349. CXAL015 Paper treatment for high resolution ink-jet recording.1 1. Hirose, M. et al. Jpn. Patent 94 263,716; Chem. Abstr. 125, 154444. CXAL045 Forms YAG fibers by pyrolysis with yttrium and aluminum carboxylates.1 1. Laine, R. et al. J. Am. Ceram. Soc. 1988, 81, 3. CXAL080 Intermediate for fluoride glasses.1 1. Ruessel, C. J. Non-Cryst. Solids 1993, 152, 161. CXAL083 Catalyst for the ring opening of epoxides forming 2-amino alcohols.1 1. Williams, D. et al. J. Org. Chem. 2009, 74, 9509. CXAN052 Forms homopolymer, copolymers with styrene, methyl methacrylate using AIBN.1 1. Koton, M. Dokl. Akad. Nauk SSSR. 1968, 137, 1368. CXBA015 Forms gel monomer systems which photopolymerize with tetrazolium salts.1 1. Margerum, J. Chem. Abstr. 81, P56666m; U.S. Patent 3,788,858, 1974. CXBA050 Undergoes solid state radiation induced polymerization.1 1. Bowden, M. et al. Makromol. Chem. 1969, 122, 186. CXBA080 CVD precursor for YBCO superconducting films.1,2 1. Rubrick, M. et al. MRS Bull. 2004, 29, 572.
2. Shibata, J. et al. J. Mater. Res. 2002, 17, 1266. CXBI040 Employed in production of high modulus and flexible superconductors.1,2 1. Hung, L. et al. J. Mater. Res. 1991, 6, 459.
2. Nasu, H. Mater. Sci. Lett. 1988, 7, 858. CXBI061 Low toxicity catalyst for moisture –cure silicone coatings.1 1. Pretti, C. et al. Ecotoxicol. Environ. Saf. 2013, 98, 250. CXBI074 Employed in thermal copy papers.1 1. Van Dam, M. U.S. Patent 2,897,090, 1959. CXBI083 Catalyzes substitution of allylic alcohols with sulfonamides, carbamates, carboxamides.1
Together with an ionic liquid forms an efficient electrocatalyst for the reduction of CO2 to CO.2 1. Shibasaki, M. et al. Angew. Chem., Int. Ed. Engl. 2007, 46, 409.
2. Medina-Ramos, J. et al. J. Am. Chem. Soc. 2014, 136, 8361. CXCA015 Forms photopolymerizeable polymers with acrylamide that accept cationic dyes.1 1. Baumann, N. German Patent 2,525,674, 1974; Chem. Abstr. 85, 12370p. CXCD010 Forms CdS nanoparticles with Na2S.1
Precursor for shape controlled CdSe nanocrystals.2 1. Nemeth, J. et al. Colloid. Polym. Sci. 2000, 278, 211.
2. Liu, L. et al. J. Am. Chem. Soc. 2009, 131, 16423. CXCD045 Forms phosphors by firing mixtures with dopants.1
Forms CdS by reaction with thiourea in methanol.2 1. Chadha, S. U.S. Patent 6,042,746, 2000.
2. Stoev, M. et al. Monatsh. Chem. 1994, 125, 1215. CXCE010 Forms thin film buffer layers suitable for high K dielectrics by sol-gel route.1 1. Kuribayashi, K. et al. J. Ceram. Soc. Jpn. 1999, 107, 275; Chem. Abstr. 130, 315351. CXCE040 Stabilizer for silicones.1 1. Koda, Y. et al. U.S. Patent 3,884,950, 1975. CXCE083 Oxidizes benzylic methyl groups to aldehydes.1
Catalyst for high yield deprotection of t-butyldimethylsilyl ethers.2 1. Thyrann, T. et al. Tetrahedron Lett. 1996, 37, 315.
2. Bartoli, G. et al. Tetrahedron Lett. 2002, 43, 5945. CXCO010 F&F: Vol. 4, p 99. CXCS080 F&F: Vol. 11, p 557; Vol. 14, p 322. CXCU010 Employed in a radical-mediated cyclization for the formation of the core structure of Septoriamycin.1
Used as the oxidant in the dehydrogenative alkenylation of 1-phenylpyrazole.2 1. Fotiadou, A. D.; Zografos, A. L. Org. Lett. 2011, 13, 4592.
2. Arockiam, P. B. et al. Green Chem. 2011, 13, 3075. CXCU040 Employed in preparation of superconductors.1 1. Negishi, A. et al. Thermochim. Acta 1989, 140, 41. CXCU050 Inhibits polymerization of methacrylates.1 1. Barabanov, V. et al. Izv. Vyssh. Ucheb. Zaved. 1973, 16, 118; Chem. Abstr. 78, 136777. CXCU080 Forms copper oxyfluoride films convertible to superconductors.1 1. Smith, J. et al. PCT WO 9858415, 1998. CXCU083 Oxidatively cyclizes δ- and ε-unsaturated silyl enol ethers to tricyclic ketones.1
Catalyst for ring opening of epoxides and aziridines.2,3 1. Snider, B. et al. J. Org. Chem. 1990, 55, 4786.
2. Kobayashi, S.; Matsubara, R.; Kitagawa, H. Org Lett. 2002, 4, 143.
3. Kobayashi, S. et al. Org. Lett. 2002, 4, 143. F&F: Vol. 7, p 76; Vol. 8, p 126; Vol. 10, p 110; Vol. 14, p. 102. CXDY083 Water tolerant Lewis acid employed in reaction of silyl enol ethers with aldehydes.1 1. Kobayashi, S. et al. J. Org. Chem. 1994, 59, 3590. CXEU050 Crosslinking agent for methacrylate resins.1 1. Xu, W. et al. J. Macromol. Sci., Chem. 1988, A25, 1397. CXFE030 Employed in preparation of Li2FeSiO4 cathodes for Li-ion batteries.1 1. Nyten, A, et al. J. Mater. Chem. 2006, 166, 2266. CXGD024 Water soluble paramagnetic relaxation agent for NMR and MRI.1 1. Dechter, J. et al. J. Magn. Reson. 1980, 39, 207. CXHF083 Catalyst for Friedel-Crafts alkylation of fluorobenzene.1 1. Kobayashi, S. et al. Tetrahedron Lett. 1998, 39, 44697. CXHG010 F&F: Vol. 1, p 644; Vol. 2, p 264; Vol. 3, p 194; Vol. 4, p 319. CXLI080 Reacts with Grignard reagents to form corresponding trifluoromethylketone F&F: Vol. 11, p 557. CXMG050 Employed in laser amplification nanocomposites.1 1. Beecroft, L. et al. Adv. Mater. 1995, 7, 1009. CXMN010 With Y(OAc)3 forms non-volatile ferroelectric memory devices by sol-gel method.1 1. Tadanaga, K. et al. J. Sol-Gel Sci. Technol. 1998, 13, 903. CXNB040 Employed in the pyrolytic coating of SrBi2Nb2O9 ferroelectrics.1 1. Nagahama, T. et al. J. Mater. Res. 1999, 14, 3090. CXNB070 Component in sol-gel perovskites.1 1. Harender, Y. et al. J. Mater. Res. 1999, 14, 3291. CXND010 Forms fluoride glasses with trifluoroacetic acid by sol-gel.1
Forms optically transparent blends with acrylic polymers.2
With Gaacac, butanediol forms garnets.3 1. Tada, M. et al. J. Mater. Res. 1999, 14, 1610.
2. Tomoyashi, K. et al. Kidorui 1998, 32, 150; Chem. Abstr. 129, 189973.
3. Inoue, M. J. Am. Ceram. Soc. 1998, 81, 1173. CXND050 Copolymerizes with styrene, methacrylic acid to form clear resins fluorescing at 427 nm.1 1. Ghao, C. et al. Chem. Abstr. 124, 177594. CXND060 Catalyst for high cis-polybutadiene.1sup> 1. Bayer, Eur. Patent 0 011 184, 1979; U.S. Patent 5,428,119, 1995. CXPD010 Catalyzes a wide range of exchange and isomerization reactions (review).1 1. Henry, P. Acc. Chem. Res. 1973, 6, 16; In Transition Metal Chemistry, II Basolo, F. Ed. 1977, ACS, p138. F&F: Vol. 1, p 778; Vol. 2, p 303; Vol. 4, p 318; Vol. 5, p 496; Vol. 6, p 642. CXPD080 F&F: Vol. 10, p 302; Vol. 12, p 373; Vol. 13, p 236; Vol. 14, p 253. CXPO076 Utilized in emulsifier-free polymerization of styrene and butadiene.1
Forms pH-responsive polyelectrolyte.2 1. Andre, A. et al. Colloid. Polym. Sci. 1998, 276, 1061.
2. Lian, D. et al. J. Appl. Polym. Sci. 1997, 63, 175. CXPO077 Reacts with halides, primary tosylates to form thioacetate esters which convert to mercaptans.1 1. Chapman, J. et al. J. Chem. Soc. 1950, 579. CXPO091 Employed in formation of bilayer amphiphile films.1
Stabilizes colloidal metal dispersions.2 1. Shimomura, M. et al. Thin Solid Films 1985, 132, 243.
2. Hirai, H. et al. Bull. Chem. Soc. Jpn. 1986, 59, 367. CXRB010 Catalyst for the polymerization of silanol terminated siloxane oligomers.1 1. Westall, S. German Patent 4,121,308, 1991; Chem. Abstr. 116, 84950. CXRH010 Homogeneous catalyst for the cyclopropanation of olefins.1 1. Rokach, J. et al. Tetrahedron Lett. 1983, 24, 5185. F&F: Vol. 5, p 571; Vol. 8, p 434; Vol. 13, p 266; Vol. 15, p 278. CXSC083 Catalyzes highly enantioselective Mannich-type reactions.1,2,3
Acylation catalyst.4 1. Kobayashi, S. et al. Synlett 1993, 472.
2. Kobayashi, S. et al. J. Am. Chem. Soc. 2002, 124, 5640.
3. Kobayashi, S. et al. Org. Lett. 2002, 4, 143.
4. Ishihara, K. et al. J. Org. Chem. 1996, 61, 4560. CXSM083 Water tolerant Lewis acid employed in reaction of silyl enol ethers with aldehydes.1 1. Kobayashi, S. et al. J. Org. Chem. 1994, 59, 3590. CXSO008 Polymerization yields electroactive "smart" polymers.1
Employed in emulsion polymerization of acrylic latices.2 1. Osada, Y.; Kajiwara, K. In Gels Handbook, Academic Press, 2000.
2. Marks, G. et al. In Specialty Monomers and Polymers, Hvelka, K. Ed., ACS Symp. Series 2000, 755, 46. CXSO010 F&F: Vol. 1, p 1024; Vol. 5, p 591. CXSO017 Forms polyelectrolyte cements with metal oxides.1 1. Saniger, J. et al. Mater. Lett. 1992, 15, 113. CXSO045 F&F: Vol. 8, p 458. CXSO073 Copolymerizes with acrylonitrile, acrylic acid, sodium acrylate in water.1 1. Grabiel, C. E.; Decker, D. L. J. Polym. Sci. 1962, 59, 425. CXSO080 Converts aryl iodides to benzotrifluorides in presence of CuI F&F: Vol. 11, p 557; Vol. 14, p 322. CXSO092 Intermediate in sulfonethylation reactions.1
Forms homopolymers and copolymers with UV light or radical source.2,3 1. Distler, H. Angew. Chem., Int. Ed. Engl. 1965, 4, 300.
2. Breslow, D. et al. J. Am. Chem. Soc. 1954, 76, 3699.
3. Eisenberg, H. et al. J. Phys. Chem. 1959, 63, 671. CXSR015 In combination with La, Mn acrylates and nitrilopropionic acid forms LaSrMnO3 perovskites.1 1. Walker, E. et al. Chem. Mater. 2004, 16, 5336. CXSV010 Reacts with silyl enol ethers followed by Et3N∙HF, yielding α-acyloxy carbonyls.1
Oxidizing agent in liquid ammonia.2
Incorporated into polyimide prepolymers forms reflective films.3 1. Rubottom, G. M. et al. J. Org. Chem. 1981, 46, 2717.
2. Kline, R.; Kershner, C. Inorg. Chem. 1966, 5, 932.
3. Southward, R. et al. Chem. Mater. 1999, 11, 501. F&F: Vol. 1, p 1002; Vol. 2, p 362. CXSV060 Forms silver nanoclusters on polyaniline at 320˚.1 1. Shin, D. et al. Nanotechnology 2009, 20(41), 5301. CXSV061 Component in thick film conductive inks.1
Forms high strength nano-porous silver films by ink-jet printing.2 1. Chemical Specialties 1999, 11, 39.
2. Dou, R. et al. Scripta  Materialia 2010, 63, 308. CXSV078 Converts alkyl halides to tosylates.1,2 1. Kornblum, N. et al. J. Am. Chem. Soc. 1959, 81, 4113.
2. Back, T. G.; Muralidharan, K. R. J. Org. Chem. 1991, 56, 2781. F&F: Vol. 1, p 1018; Vol. 2, p 370; Vol. 7, p 323. CXSV080 F&F: Vol. 1, p 1018; Vol. 7, p 323; Vol. 8, p 444; Vol. 11, p 557. CXSV083 F&F: Vol. 6, p 520; Vol. 7, p 324; Vol. 9, p 414; Vol. 12, p 435; Vol. 13, p 274; Vol. 14, p 282; Vol. 16, p 302; Vol. 17, p 314. CXTI038 Employed in spin-on high K BST dielectric films.1 1. Dougherty, T. et al. U.S. Patent 6,316,651, 2001. CXYB083 Catalyzes aqueous Diels-Alder (aza-DA) reactions.1
With Mg/Me3SiCl catalyzes the reductive coupling of imines, aldehydes and ketones.2 1. Xie, W. et al. CHEMTECH 1999, 29, 23.
2. Aspill, H. C. et al. Tetrahedron Lett.2010, 51, 1558. CXYO050 Component in photopolymerizeable superconductor precursor.1 1. Hung, Y. et al. Appl. Phys. Lett. 1990, 57, 2945. CXYO080 Component in superconducting films.1
Intermediate for NaYF4 nanocrystals.2 1. Hung, L. et al. J. Mater. Res. 1993, 8, 169.
2. Boyer, J. et al. J. Am. Chem. Soc. 2006, 128, 7444. CXYO083 Employed in preparation of superconducting thin films.1 1. Peshev, P. et al. Izv. Akad. Nauk, Ser. Khim. 1990, 23, 433. CXZN015 Forms holographic recording media.1
Polyolefin grafts exhibit anti-bacterial activity.2 1. Firmia, A. et al. Appl. Opt. 1994, 33, 3633.
2. Darn, J. et al. J. Appl. Polym. Sci. 1998, 69, 2213. CXZN050 Employed in EPDM vulcanization formulations.1 1. Costin, R. et al. Rubber World 1992, 206, 27. CXZN085 Antiseptic.1
Catalyst for caprolactone polymerization promoted by benzyl alcohol.2 1. Arch. Biochem. 1945, 7(3), 415.
2. Hao, T. et al. Macromol. Rapid Commun. 2012, 33, 1294. CXZR050 Employed in dental polymer composites.1 1. Misra, D. et al. J. Dent. Res. 1985, 64, 1405. DBATI50 Forms barium titanate thin films by thermal conversion at ~600° of spin-on coatings.1
Forms catalytic mixed oxide nanoparticles by sonocation.2 1. Gust, M. et al. J. Am. Ceram. Soc. 1997, 80, 2828.
2. Niesz, K.; Morse, D. Nano Today 2010, 5, 99. DLINB050 Forms dipolar organic/ferroelectric oxide hybrids.1 1. Bescher, E. et al. Mater. Res. Soc. Symp. Proc. 1996, 435, 605. DMS-NB25 Bicycloheptenyl terminated silicones undergo ring-opening metathesis polymerization (ROMP) reactions.1,2 1. Finkelstein, E. 10th Int'l Organosilicone Symp. Proc. 1993, 120.
2. Angeletakis, C. et al. U.S. Patent 6,455,029, 2002. GEA0530 Yields amorphous GeC alloys on pyrolysis.1
Irradiation of benzene solutions with Fe(CO)5 gives E-propenyl isomer.2
Reacts with unsaturated compounds.3 - e.g. with EtO2CN=NCO2Et forms Et3GeCH=CH2N(CO2Et)NHCO2Et
Reacts with amines and aldehydes to form homoallylic amines.4 1. Morancho, R. Proc. Eur. Con. Chem. Vap. Dep., ed R. Porat, Iscar , p. 381, 1987; Chem. Abstr. 113, 101763h.
2. Mizuno, K. et al. Chem. Express 1992, 7, 209.
3. Laporterie, A. et al. J. Organomet. Chem. 1975, 101, 187.
4. Akiyama, T.; Iwai, Y. Synlett 1998, 273. GEA0550 Electrophilic allylation of aromatic compounds effected with thallium trifluoroacetate.1
Copolymerizes with styrene and methyl methacrylate.2 1. Ochiai, M. et al. Tetrahedron Lett. 1981, 22, 4491.
2. Korshak, V. Bull. Acad. Sci. USSR 1959, 140. GEA0700 Substitutes Al with Ge in Y type zeolites.1 1. Shul, Y. et al. Chem. Abstr. 110, 178261p; Nippon Kagaku Kaiishi, 1989, 3, 429. GEB1025 Intermediate for germazene.1
Forms poly(germanium enolates) by reaction with α,β-unsaturated ketones.2
Reacts with carbon dioxide to form silylated isocyanates and carbodiimides.3
Forms 3-coordinate complexes with (Et3P)2Ptacac that reversibly bind CO2, H2.4 1. Chen, H. et al. Inorg. Chem. 1991, 30, 3390.
2. Kobayashi, S. et al. J. Am. Chem. Soc. 1992, 114, 4929.
3. Sita, L. et al. J. Am. Chem. Soc. 1996, 118, 10912.
4. Litz, K. et al. Organometallics 1995, 14, 5008. GEB1500 Forms Ge nanowires.1 1. Mathur, S. et al. Chem. Mater. 2004, 16, 2449. GEB1700 Photorefractive compound for non-linear optical devices.1 1. Fuet, S. et al. J. Am. Ceram. Soc. 1997, 80, 2501. GEB1969.5 Precursor for germanium nanowires.1 1. Yang, H. et al. J. Mater. Chem. 2012, 22, 2215. GEB1980 Intermediate for organogermylene precursor.1 1. Ando, W. et al. Organometallics 1989, 8, 2759. GEC2100 Anti-neoplastic agent.1,2 1. Kumano, N. et al. Chem. Abstr. 97, 103976e 1982.
2. Asai, K. Chem. Abstr. 83, 172843g 1975. GEC2150 Reacts with RI to yield RGeCl3.1
Auxiliary catalyst with Pt for hydroformylation of olefins.2 1. Poskozim, P. J. Organometal. Chem. 1968, 12, 115.
2. Ogata, I. et al. Chem. Abstr. 92, 6067y; German Patent DE 2,909,042, 1979. GEC2300 Converts to ethyldimethylchlorogermane with AlCl3.1 1. Mironov, V. et al. Zh. Obshch. Khim. 1969, 397. GED3200 Intermediate for UV sensitive polygermanes.1 1. Hallmark, V. Macromolecules 1990, 23, 2346. GED3410 Precursor for germanium by CVD.1,2 1. Weidu, L. et al. J. Vac. Sci. Technol., A 1984, 12, 2281.
2. Kellerman, B. et al. J. Vac. Sci. Technol., A 1995, 13, 1819. GED3600 Reacts with α-diketones to yield α-amino-β-oxoalkoxygermanes, which decompose to α-ketoamines.1 1. Riviere-Baudet, M. Recl. Trav. Chim. Pays-Bas 1975, 94, 19. GED4538 Forms high RI liquid lenses in electrowetting devices.1 1. D'Ardhuy, G. L. et al. U.S. Patent 7,780,874, 2010. GED4550 Forms stable diphenylhydrogermyl lithium.1
Precursor for single-crystal Ge nanowires.2,3
Bridging ligand for Pd complexes.4
Precursor for germanium nanowire anodes in lithium-ion batteries.5 1. Castel, A. et al. Organometallics 1990, 9, 205.
2. Hanrath, T. et al. Adv. Mater. 2003, 15, 437.
3. Hanrath, T. et al. J. Am. Chem. Soc. 2004, 126, 15466.
4. Tanabe, M. et al. Organometallics 2006, 25, 796.
5. Chockla, A. M. et al. Appl. Mater. Interfaces, 2012, 4, 4658. GEG5000 Employed in epitaxial chemical vapor deposition of germanium thin films for solar devices and LEDs.1,2 1. DeBoer, W. et al. Appl. Phys. Lett. 1991, 58, 1286.
2. Kühne, H. et al. J. Mater. Res. 1993, 8, 131. GEG5180 Intermediate for cyclic trigermanes.1 1. Ichinohe, M. et al. J. Chem. Soc. 2000, 122, 6781. GEG5200 Forms stable ionic adduct with carbenes.1
Diastereoselective Reformatsky catalyst formed on reduction with potassium.2
Forms nanowires at ~350° in trioctylphosphine with Bi seeds.3
Forms infrared-emitting nanocrystals.4 1. Arduengo, A. et al. Inorg. Chem. 1993, 32, 1541.
2. Kagoshima, H. et al. J. Org. Chem. 1998, 63, 691.
3. Lu, X. et al. J. Am. Chem. Soc. 2005, 127, 15728.
4. Lee, D. et al. J. Am. Chem. Soc. 2009, 131, 3426. GEG5420 Employed as a dielectric in gallium arsenide MISFETS.1,2 1. Pande, K. et al. Appl. Phys. 1982, A28, 123.
2. Pande, K. et al. Solid State Elec. 1981, 25(2), 145. GEG5480 Phase change reversible alloy for erasable optical storage.1 1. Libera, M. et al. MRS Bull. 1990 15, 40. GEG5500 Doping source in vapor phase epitaxy of III-V semiconductors.1 1. Hitachi Chem. Abstr. 77, P119870p; Brit. Patent 1,285,686, 1972. GEG5600 Catalyst for chlorination of activated aromatics yielding chlorinated cyclohexadienes.1
Coupling agent (star site) for production of rubbers from living polymers.2,3
Employed in formation of mixed SiO2-GeO2 powders in hydrogen-oxygen flames.4 1. DiBella, E. et al. U.S. Patent 3,355,506, 1967.
2. Chem. Abstr. 97, P128909y.
3. Hanna, J. et al. J. Non-Cryst. Solids 1996, 198-200, 879; Chem. Abstr. 97, P40160m.
4. Hung, C. et al. J. Mater. Res. 1992, 7, 1870. GEG5700 In combination with SiH4 forms photoconductive films.1
In combination with disilane forms SiGe films on glass.2 1. Chem. Abstr. 107, 15544g Jap. Pat.
2. Hanna, J. et al. J. Non-Cryst. Solids 1996, 198-200, 879; Chem. Abstr. 107, P15544g. GEG5800 Employed in growth of germanium nanowires.1
In combination with benzoyl peroxide initiates living radical polymerization of styrene.2 1. Wu, Y. et al. Chem. Mater. 2000, 12, 605.
2. Goto, A. et al. Polym. Prepr. 2005, 46, 245. GEH6066 Triethylgermylates carboxylic acids.1
Triethylgermylates uric acid with HMDS catalyst.2 1. Anderson, H. et al. J. Am. Chem. Soc. 1950, 72, 2089.
2. Gordetsov, A. Chem. Abstr. 112, 179256u; Metalorg. Khim. 1989, 2, 884. GEH6100 Initiator for visible light induced photoreduction of 10-methylacridinium ions.1
Employed in surface activation of dehydrogenation catalysts.2 1. Fukuzumi, S. J. Chem. Soc., Chem. Commun. 1990, 1236.
2. Nuzzo, R. et al. J. Catal. 1984, 85, 267. GEI6480 Applied to the low temperature growth of Ge films on GeSi films.1
Liquid germanium precursor for growth of high-purity Ge and GeSi films.2 1. Woelk, E. et al. Semiconductor International 2006, 29, 39. 
2. Shenai, D. V. et al. J. Crystal. Growth 2007, 298, 172. GEL6467 Pyroelectric.1
Potential use as solid electrolyte in thin film microionic devices.2 1. Bhalla, A. Ferroelectrics 1981, 38, 935.
2. Awitor, K. et al. Mater. Res. Bull. 1991, 26, 67. GEM6474 Forms germanium hydrides on exposure to hydrochloroic acid.1 1. Leitsin, V. A. Tsvetn. Met. 1959, 3, 44. GEM6485 Comonomer with chloromethylstyrene for RIE resistant photoresist.1 1. Mixon, D. et al. J. Vac. Sci. Technol., B 1989, 7(6), 1723. GEM6490 Copolymerizes with styrene and methyl methacrylate.1 1. Kolesnikov, G. et al. J. Polymer Sci. 1961, 52, 55. GEM6499 In combination with GeH4 forms diamond structure Ge(1-x)Cx alloys.1 1. Michaell, T. et al. Chem. Mater. 1996, 8, 2491. GEP6800 Forms polycyclic phenylgermanosiloxanes upon reaction with PhSi(OH)3.1 1. Tikhonov, V. Zh. Obshch. Khim. 1996, 66, 83. GEP6894 Employed in scintillator type radiation detector.1
Employed in green phosphors.2 1. Yamada, T. et al. Chem. Abstr. 112, 242041n; JP. Patent 01 221,485, 1989.
2. Hitachi, Chem. Abstr. 95, 214047f; Jpn. Patent 56 103,276, 1981. GES6940 Catalyst for the preparation of polyesters.1 1. Logeat, M. Chem. Abstr. 105, P227577d; Fr. Patent 2,570,077, 1986. GET7000 Polymerizes.1
Forms copolymers with alkenes.2
Allylates aromatic aldehydes with scandium triflate catalyst.3 1. Mazerolles, P. et al. Compt. Rendu. 1959, 248, 2018.
2. Jones, J. et al. U.S. Patent 2,985,631, 1961.
3. Akiyama, T. et al. Tetrahedron Lett. 1997, 38, 853. GET7060 With Pb(OAc)2 forms Pb5Ge3O11 piezoelectric films useful in second harmonic generation.1 1. Boulton, J. et al. In Sol-Gel Optics II, MacKenzie, J. Ed. SPIE Proc., 1992, 1758, 292. GET7080 Forms catalytic PdGe alloy on reaction with Pd on Al2O3.1
Aromatic nitriles2, pyrillium salts3 undergo photoinduced alkylation. 1. Aduriz, H. et al. J. Catal. 1989, 119, 97.
2. Nakadaira, Y. Proc. IX Int' Organosilicon Symp. Paper 1.12 1990 Roy. Chem. Soc.
3. Kyushin, S. Chem. Lett. 1990, 2191. GET7100 Sol-gel intermediate for optical fiber preforms,1 and monoliths.2,3
Forms GeO2 by PCVD.4
Incorporation into SiO2 interlayer dielectric / passivation reduces reflow temp.5
Sol-gel derived SiO2-GeO2 glasses are photosensitive / high-pressure H2 loading.6,7
Reacts with H2S, sulfur, water to form semiconductor germanium disulfide.8 1. Matsuo, N. et al. Chem. Abstr. 105, 10766e; German Patent 3,535,367, 1986.
2. Mukherjee, S. Mater. Res. Soc. Symp. Proc. 1984, 32, 111.
3. Mukherjee, S. Mater. Res. Soc. Symp. Proc. 1986, 73, 443.
4. Secrist, D. et al. Bull. Am. Ceram. Soc. 1966, 45, 784.
5. Fisher, S. et al. Solid State Tech., p55, September, 1993.
6. Czekaj, C. et al. Amer. Chem. Soc. Meeting, August 1994.
7. Green, B. et al. J. Non-Cryst. Solids 1994, 168, 195.
8. Etsell, T. et al. J. Mater. Chem. 1997, 7, 105. GET7150 Employed in synthesis of Ge nanowires for sensor applications.1 1. Hanrath, T. et al. Adv. Mater. 2003, 15(5), 437. GET7277 Used to prepare GeTe films.1 1. Abrutis, A. et al. J. Cryst. Growth 2009, 311, 362. GET7280 Partial hydrolysis leads to chain extended structures.1
Intermediate for α- and β-barium germanate by sol-gel.2
Intermediate for Y2GeO5 by sol-gel.3
Intermediate for MgGeO3 by sol-gel.4
Utilized in Ge-doped sol-gel encapsulation of quantum wells.5 1. Schwarz, R. et al. Z. Anorg. Chem. 1954, 275, 193.
2. Yamaguchi, O. et al. Polyhedron 1983, 2, 1213.
3. Yamaguchi, O. et al. J. Am. Ceram. Soc. 1985, 68, C110.
4. Yamaguchi, O. et al. J. Chem. Soc., Dalt. Trans. 1983, 2139.
5. Ooj, B. Electrochem. Solid State Lett. 2004, 7, F96. GET7500 Reacts with H2S in ethanol to yield amorphous sol-gel GeS2.1
Diffuses into porous silica, hydrolyzing to yield optical waveguide.2
Forms IR transmitting optic by sol-gel.3
In combination with silanol-terminated polydimethylsiloxanes forms coatings for GC.4 1. Melling, P. Ceram. Bull. 1984, 63, 1427.
2. Kondu, O. Jpn. J. Appl. Phys., Part 1 1990, 29, 2868.
3. Gael, S. et al. J. Am. Chem. Soc. 1990, 112, 5636.
4. Fang, L. et al. Anal. Chem. 2007, 79, 9774. GET7550 Source of GeO2 films by PECVD.1
Ionization currents / free ions on exposure to γ-rays suggest utilization in detectors.2,3
Forms amorphous GeC:H films by CVD with negative bias.4 1. Reich, S. et al. Thin Solid Films 1990, 189, 293.
2. Geer, S. Nucl. Instrum. Methods Phys. Res., Sec. A 1990, A287, 447.
3. Holroyd, R. et al. Phys. Rev. B: Condens. Matter 1991, 43, 9003.
4. Grill, A. et al. J. Mater. Res. 2002, 17, 367. GET7750 Catalyst in olefin polymerization.1,2
Catalyst in polyester condensation.3 1. Carrick, W. et al. J. Am. Chem. Soc. 1960, 82, 3383.
2. Kelsey, R. Brit. Patent 1,147,912, 1969.
3. Matsuzawa, K. et al. Chem. Abstr. 82, 17806, 1975; Jpn. Patent 74-05918, 1974. GET7850 Catalyst for styrene polymerization.1 1. Anand, L. et al. Ind. J. Chem. 1967, 5(5), 188. GET8080 Employed in metallization of polylphenyleneoxide membranes to separate EtOH/H2O.1 1. Fusaoka, Y. et al. Chem. Abstr. 110, 115598hj, Jpn. Patent 63,273,640, 1988. GET8100 Effects free-radical reductive addition of alkyl halides to olefins with AIBN.1,2
Reduces benzylic chlorides 70 X faster than silyl hydrides.3
Initiates radical cyclization of polyenes.4 1. Hershberger, J. Tetrahedron Lett. 1986, 26, 6289.
2. Pike, P. et al. Tetrahedron 1988, 44, 6295.
3. Mayr, H. et al. Angew. Chem., Int. Ed. Engl. 1992, 31, 1046.
4. Spino, C. et al. J. Org. Chem. 1999, 64, 5292. GET8150 Pure GeCl2 may be provided by cooling to -30° and pulling vacuum.1,2
Complex with 2 moles ether reduces nitro compounds and ferric chloride.3,4
Hydrogermylates olefins without catalyst.5,6
Undergoes superacid reactions with aromatics.7,8 1. Schwarz, R. et al. Z. Anor. Allg. Chem. 1954, 275, 1.
2. Brauer, G. Handbook of Preparative Inorganic Chemistry, 717, Academic, 1963.
3. Craddock, S. et al. Inorg. Chem. 1967, 6, 1751.
4. Creemers, H. et al. J. Organomet. Chem. 1967, 7, 237.
5. Lesbre, M. et al. The Organic Compounds of Germanium, 223, Wiley, 1971.
6. Wolfsberger, W. J. Praktische Chem. 1992, 334, 453.
7. Kolosnikov, S. Main Group Metal Chem. 1989, 12, 305.
8. Kolosnikov, S. Chem. Abstr. 110, 114984u; Izv. Akad. Nauk. Ser. Khim. 1988, 3, 666. GET8240 With Et3N converts benzothiazolines to Schiff bases pentacoordinated to Ge.1
Cocatalyst with AlCl3 for polymerization of terpenes.2
Selective protecting agent for alkyne substituted oligosaccharides.3 1. Jain, L. Ind. J. Chem., Sec. A 1982, 21A, 583.
2. Chem. Abstr. 86, 55962w; German Patent 2,620,597, 1976.
3. Ernst, A. et al. Helv. Chim. Acta 1996, 79, 1279. GET8300 Hydrogermylates alkylpropiolates to give triethylgermylacrylates.1
Regioselective addition to alkynes gives (E) vinylgermanes.2
Catalyst for polymerization of α-olefins.3
Precursor for germanium deposition at 300°.4 1. Dimens, V. et al. J. Organomet. Chem. 1992, 435, 257.
2. Esteruelas, M.A. et al. Organometallics 1999, 18, 2267.
3. Shearer Jr., N. H.; Coover Jr., H. W. U.S. Patent 2,925,409, 1960.
4. Chen, J. et al. J. Vac. Sci. Tech., A 1997, 15, 1140. GET8440 More sensitive and selective gas phase reactant for distinguishing 1,2-cyclopentanediol isomers than C, Si, or Sn analogs.1
Trimethylgermylation reagent for formation of dienolates of α,β-unsaturated esters which react with electrophiles.2
Reagent for cyclopentannulation reactions.3 1. Meyerhoffer, W. J. Organomet. Chem. 1989, 373, 143.
2. Yamamoto, Y. et al. J. Chem. Soc., Chem. Comm. 1988, 1639.
3. Piers, E. et al. J. Org. Chem. 1990, 55, 3454. GET8500 Forms germanium enolates which react under controlled conditions to give syn or anti aldols.1
Reagent for regioselective synthesis of α- or γ-aminoacids from masked dienolates.2,3
In combination with HSiCl3 forms strained silicon epitaxial films.4 1. Yamamoto, Y. et al. F&F Vol. 14, p 329; J. Chem. Soc., Chem. Comm. 1988, 802.
2. Yamamoto, Y. et al. Tetrahedron Lett. 1989, 30, 3445.
3. Yamamoto, Y. et al. J. Org. Chem. 1990, 55, 3118.
4. Woelk, E. et al. Semiconductor Int'l. 2006, 4, 39. GET8560 Effects halogen displacement of haloalkanes with hydrogen when exposed to UV.1
Reacts with t-BuLi to form Me3GeLi.2
Undergoes demethanative coupling to form polygermanes.3 1. Coates, D. et al. J. Chem. Soc., Perkin Trans. 1978, 11, 725.
2. Piers, E. et al. Organometallics 1995, 14, 5011.
3. Reichl, J. et al. J. Am. Chem. Soc. 1996, 118, 9430. GET8630 Catalyst for cycloaddition of CO2 to oxiranes.1 1. Chem. Abstr. 98, 16106y. GET8660 Adds to epoxides in presence of Et3B.1
Catalyst with Co2(CO)8 for preparation of glycol monoalkyl ethers from synthesis gas, HCHO and alkanols.2
Forms carbonyl radical acceptor synthons yielding cyclopentanones3, oximes.4
Regioselective addition to alkynes gives (E) vinylgermanes.5
Undergoes H2PtCl6 catalyzed hydrogermylation reactions.6 1. Ichinose, Y. et al. Chem. Lett. 1988, 8, 1437.
2. Knifton, J. J. Mol. Catal. 1985, 30, 281.
3. Curran, D. et al. J. Am. Chem. Soc. 1997, 119, 4797.
4. Iserloh, U. J. Org. Chem. 1998, 63, 4711.
5. Esteruelas, M. A. et al. Organometallics 1999, 18, 2267.
6. Schumann, H. et al. Organometallics 2007, 26, 397. GET8717 Reacts with NH3 to form the digermazane.1 1. Pola, J. et al. J. Organomet. Chem. 1991, 415, 47. GET8721.5 Readily converted to (Me3Si)3GeCl.1 1. Brook, A. et al. J. Organomet. Chem. 1986, 299, 9. GEV9200 Oligomerizes with butadiene in presence of NiCl2-Et2AlCl-Ph3P.1
Undergoes Diels-Alder reactions.2
Reacts with Fischer carbene complexes to form germyl enol ethers.3 1. Rafikov, S. Izv. Akad. Nauk. Ser. Khim. 1982, 920.
2. Salimgareeva, I. et al. Dokl. Nauk. 1981, 261, 118.
3. Barluenga, J. et al. Organometallics 1997, 16, 4525. HPM-502 Component in flexible optical waveguides.1 1. Bichler, S. et al. Optical Materials, 2012, 34, 772. INBO009 Used as a precursor for boron nitride.1 1. Fazan, P. et al. Chem. Mater. 1995, 7, 1942. INBO022 F&F: Vol. 3, p 299. INCO030 In combination with SiH4 forms CoSi by CVD.1
Catalyst for conversion of olefins, alkynes, and CO to cyclopentenones.2 1. West, G. et al. Appl. Phys. Lett. 1988, 53, 740.
2. Comprehensive Organic Synthesis, Vol. 5 9.1, 1037, 1991 INCO032 Employed in CVD of cobalt, cobalt silicide.1
Hydrosilylation catalyst for carbonyls.2
In combination with Fe(CO)5 forms spherical Fe/Co particles.3
Reagent for mediated epitaxy of cobalt.4 1. Ivanova, A. et al. J. Electrochem. Soc. 1999, 146, 2139.
2. Chatani, N. et al. Chem. Lett. 2000, 14.
3. Morita, H. et al. J. Photochem. Photobiol., A 2009, 206, 205.
4. Kaloyeros, A. et al. U.S. Patent 6,346,477, 2001. INFE030 Forms high density memory material with Pt AcAc by CVD.1
Photochemistry elaborated.2 1. Sun, S. et al. Science 2000, 287, 1989.
2. Portus, P. et al. J. Am. Chem. Soc. 2004, 126, 10713. INGA070 Forms GaN by reaction with lithium nitride and ammonium chloride at room temp.1 1. Wallace, C. et al. Chem. Mater. 1999, 11, 2299. INMO030 Forms X-ray mirrors by alternating deposition with SiO2 by PECVD.1 1. Hamelmann, F. et al. Thin Solid Films 2000, 358, 90. F&F: Vol. 2, p 287; Vol. 3, p 206; Vol. 4, p 346; Vol. 9, p 317; Vol. 10, p 273; Vol. 11, p 350; Vol. 12, p 330; Vol. 13, p 194; Vol. 16, p. 226. INNI023 Catalyst for the reaction of Grignards with enol ethers forming olefins.1 1. Wenkert, E. et al. J. Am. Chem. Soc. 1979, 101, 2246. F&F: Vol. 6, p 50; Vol. 15, p. 122. INPD024 Catalyst for cross-coupling reactions.1 1. Masuyama, Y. et al. Tetrahedron Lett. 1988, 29, 3563. F&F: Vol. 1, p 56; Vol. 5, p 31; Vol. 6, p 45; Vol. 8, p 44; Vol. 10, p 31; Vol. 13, p 34; Vol. 15, p 29. INPH055 Catalyst for the polymerization of polysiloxanes from silanol oligomers.1,2,3,4 1. Nitzsche, S. et al. U.S. Patent 3,839,388, 1974.
2. Nye, S. et al. U.S. Patent 5,753,751, 1998.
3. Dittrich, U. et al. U.S. Patent 5,919,883, 1999.
4. Burkhart, J. U.S. Patent 4,053,494, 1997; 4,203,913, 1980. INRE030 Initiates photopolymerization of cyclohexene oxides.1 1. Abu-Abdoun, I. Polym. Int. 1999, 48, 1197. INRH078 Inhibition resistant hydrosilylation catalyst for silicone coatings.1
Catalyst for preparation of silyl ketene acetals.2 1. Armstrong, S. Eur. Patent 510,847, 1992.
2. Bajzer, W. et al. Eur. Patent 219,949, 1986. INTA070 Precursor for Ta and TaN by CVD.1,2 1. Chen, X. et al. J. Vac. Sci. Technol., B 1998, 16, 2887.
2. Arkles, B. et al. U.S. Patent 5,919,531, 1999. INTA075 Employed in CVD of TaN for diffusion barriers in microelectronics.1 1. Kaloyeros, A. et al. U.S. Patent 6,139,922, 2000. INTI004 Reagent for micropatterned SrTiO3 films.1
In combination with H3BO3 forms titania coatings on glass fibers.2
Intermediate for TiNxOyFz photocatalyst.3 1. Gao, Y. et al. Chem. Mater. 2002, 14, 5006.
2. Razgon, A. et al. J. Mater. Res. 2005, 20, 2544.
3. Maeda, K. et al. Chem. Mater. 2009, 21, 2286. INTI060 Forms titanium silicide on Si substrates.1 1. Lee, C. J. Mater.Synth. Process. 1998, 6, 55. INTI065 F&F: Vol. 1, p 1169; Vol. 2, p 414; Vol. 3, p 291; Vol. 4, p 507; Vol. 5, p 671; Vol. 6, p 590. INTI071 Employed in CVD of Ti and TiN films for microelectronics.1,2
In combination with SiI4 forms Ti-Si-N diffusion barriers.3 1. Faltermeier, C. et al. J. Electrochem. Soc. 1997, 144, 1002.
2. Kaloyeros, A. et al. U.S. Patent 6,090,709, 2000.
3. Eisenbraun, E. et al. J. Vac. Sci. Technol., B 2000, 18(4), 2011. INTI079 Forms bimetallic complexes.1 1. Grillo, V. et al. J. Chem. Soc., Chem. Commun. 1997, 1561. INTU030 Employed in MOCVD of tungsten1 and tungsten nitride2 in ULSI devices. 1. Faltermeier, F. et al. In Advanced Metallization for ULSI Applications, 1992 Cale, T. et al. Eds. Mater. Res. Soc. 1993.
2. Kelsey, J. et al. J. Vac. Sci. Technol. 1999, B17, 1101. INZR065 F&F: Vol. 1, p 1295. OMAL005 Employed in CVD of aluminum.1,2 1. Jang, T. et al. Thin Solid Films 1998, 333, 137.
2. Neo, Y. et al. Appl. Surf. Sci. 1999, 142, 443. OMAL008 Employed in CVD of aluminum.1
Employed in chemical beam epitaxy of aluminum nitride.2 1. Foord, J. et al. J. Chem. Soc., Chem. Comm. 1990, 11.
2. Glass, J. et al. J. Phys. Chem. Solids 1996, 57, 563. OMAL021.2 Employed in a selective epoxide reduction in a synthesis of the muscarinic antagonist, tropane.1 1. Bream, R. N. et al. Org. Proc. Res. Dev. 2013, 17, 641.
F&F: Vol. 1, p 260; Vol. 2, p 140; Vol. 3, p 101; Vol. 4, p 158; Vol. 5, p 224; Vol. 6, p 198; Vol. 7, p 111; Vol. 8, p 163; Vol. 9, p 161; Vol. 10, p 149; Vol. 11, p 185; Vol. 12, p 191; Vol. 15, p 137. OMAL021.5 F&F: Vol. 1, p 260; Vol. 2, p 140; Vol. 3, p 101; Vol. 4, p 158; Vol. 5, p 224; Vol. 6, p 198; Vol. 7, p 111; Vol. 8, p 163; Vol. 9, p 161; Vol. 10, p 149; Vol. 11, p 185; Vol. 12, p 191; Vol. 15, p 137. OMAL033.2 F&F: Vol. 7, p 146; Vol. 10, p 177; Vol. 16, p 2. OMAL082 Catalyst for the coupling of α-olefins to substituted vinylidines.1 1. Arkles, B. U.S. Patent 5,874,603, 1999. OMAL082.2 Shown to enantioselectively Michael add to nitrodienes and nitroenynes.1 1. Tissot, M. et al. Org. Lett. 2010, 12, 2770. OMAL086.2 Used in the enantioselective addition to aldehydes and ketones.1
Employed in the selective protection of aldehydes in the presence of ketones and of ketones in the presence of esters.2 1. Carbohydrates: Tools for Stereoselective Synthesis, 2013, 293.
2. Barrios, F. J.; Springer, B. C.; Colby, D. A. Org. Lett. 2013, 15, 3082. F&F: Vol. 8, p 508; Vol. 15, p 341; Vol. 17, p 372. OMAL086.4 Shown to enantioselectively Michael add to nitrodienes and nitroenynes.1 1. Tissot, M. et al. Org. Lett. 2010, 12, 2770. OMAN076 UV sensitizer for poly(t-butoxycarbonyloxystyrene) chemically amplified photoresist.1 1. Hinsberg, W. et al. J. Vac. Sci. Technol., B 1998, 16, 3689. OMAN080 Alkylated by aluminum alkyls and Grignards to form R3Sb.1 1. Thomas, C. et al. Polyhedron 1993, 12, 89. OMAS078 Ligand in Stille coupling reactions.1 1. Farina, V.; Mercier, C.; Chabardes, P. Pure Appl. Chem. 1996, 68, 73. OMAS080 Employed in CVD of epitaxial films.1 1. Zimmer, M. Eur. Patent 460598 A1, 1991. OMBI078 Catalyst for the polymerization of formaldehyde.1
Arylation reagent.2,3
Precursor for deposition of SBT ferroelectrics at 350-400˚ substrate temperature.4 1. DuPont, Brit. Patent 766,629, 1957; Chem. Abstr. 51, 10126.
2. Barton, D. J. Chem. Soc. 1980, 827.
3. Barton, D. et al. Tetrahedron Lett. 1987, 28, 887.
4. Bedoya, C. et al. Chem. Mater. 2004, 16, 3176. OMBO028 Cocatalyst in metallocene based olefin polymerizations.1,2
Catalyst for polymerization of cyclosiloxanes.3 1. Biagini, P. et al. Eur. Patent 0 667 357 A1.
2. Hanna, P. et al. U.S. Patent 5,523,385, 1996.
3. Grzelka, A. et al. J. Inorg. Organomet. Polym. 2004, 14, 101. OMBO059 F&F: Vol. 14, p 299; Vol. 16, p 324; Vol. 17, p 331. OMBO087 Catalyzes hydrosilylation of carbonyls.1 1. Parks, D. et al. J. Org. Chem. 2000, 65, 3090. OMCD020 Employed in thin film deposition of CdS and CdSe by MOCVD.1 1. Jones, A. et al. J. Cryst. Growth 1989, 97, 1537. OMCO018 Catalyzes the cyclotrimerization of alkynes.1 1. Paulson, P. L. Encyclopedia of Reagents for Organic Synthesis, 1995, 3, 1639. OMFE022 Forms catalyst with PdCl2 for very effective Suzuki cross-coupling protocol.1
Used to prepare a stable nickel catalyst for Suzuki-Miyaura cross-coupling reactions.2 Role in various catalyst applicaions.3,4 1. Colacot, T. J.; Shea, H. A. Org. Lett. 2004, 6, 3731.
2. Ge, S.; Hartwig, J. F. Angew. Chem., Int. Ed. Engl. 2012, 51, 12837.
3. Young, D. J.; Chien, S. W.; Hor, T. S. A. Dalton Trans. 2012, 41, 12655.
4. Colacot, T. J.; Parisel, S. in Ferrocenes, Stepnicka, P. Ed., Wiley and Sons, 2008, 117-140. OMGA025 In combination with AsH3 used in ALE of GaAs.1 1. Narman, A. et al. Surf. Sci. 1992, 269-270, 1041. OMGA079 Employed in ALD of GaAs.1 1. Creighton, J. et al. Appl. Phys. Lett. 1990, 57, 279. OMGA080 Intermediate for gallium alkoxides suitable for CVD of gallium oxide films.1 1. Miinea, L. et al. J. Mater. Chem. 1999, 9, 929. OMGO017 Forms methanium salts on reaction with tetrakis(dimethoxyboryl)methane.1 1. Schmidbauer, H. et al. Chem. Ber. 1992, 125, 2705. OMHF066 Employed in ALD of hafnium silicate.1 1. Nam, W. et al. Electrochem. and Solid-State Lett. 2004, 7, C55. OMHF075 Employed in ALD of hafnium nitride.1
Employed in CVD of HfO2.2 1. Becker, J. et al. Chem. Mater. 2004, 16, 3497.
2. Oshita, Y. et al. Thin Solid Films, 2002, 406, 215. OMHF085 F&F: Vol. 15, p 119; Vol. 16, p 120; Vol. 17, p 105. OMIN020 Reacts with cyclopentadienyllithium to form cyclopentadienyldimethylindium.1 1. Beachley, Jr., O. et al. Organometallics 1999, 18, 2561. OMIR017 Couples dienes with activated hydrocarbons.1 1. Mercier, C.; Chabardes, P. Pure Appl. Chem. 1994, 66, 1509. OMLI041 F&F: Vol. 1, p 686; Vol. 2, p 274; Vol. 3, p 202; Vol. 5, p 448; Vol. 6, p 384, Vol. 7, p 242, Vol. 8, p 342; Vol. 9, p 310; Vol. 12, p 324; Vol. 14, p 211; Vol. 15, p 208. OMPD082 Catalyst for coupling reactions.1 1. Danishefsky, S. et al. J. Am. Chem. Soc. 1993, 115, 6094. F&F: Vol. 6, p 571; Vol. 8, p 472; Vol. 9, p 451; Vol. 10, p. 384. OMPH012 Air and water stable immonium salt that is an ionic liquid.1
Ionic liquid reviewed.2 1. Fuller, J. et al. J. Chem. Soc., Chem. Commun. 1994, 299.
2. Walton, T. Chem. Rev. 199, 99, 2071. OMPH027 F&F: Vol. 1, p 251; Vol. 2, p 132; Vol. 12, p 187. OMPH056 Reviewed along with other azides.1
Employed in preparation of macrocyclic lactams.2
Reagent for aziridation of olefins in presence of catalysts.3
Used as a reagent for a modified Curtius reaction.4 1. Swamy, K. C. K. et al. Chem. Rev. 2009, 109, 2551.
2. Qian, L. et al. Tetrahedron Lett. 1990, 31, 6469.
3. Ikeda, L. I. et al. Synthesis 1980, 650.
4. Shiiori, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203. F&F: Vol. 4, p 210; Vol. 5, p 280; Vol. 7, p 138; Vol. 8, p 211; Vol. 10, p 173, Vol. 16, p 160. OMPH058 Mediates silicon nanocrystal synthesis from diphenylsilane.1 1. Barrett, C. et al, Nanotechnology 2009, 20, 275605. OMPH062 Component in CdS synthesis - leads to nanowire formation.1 1. Xi, L. et al, Thin Solid Films 2009, 517, 6430. OMPH066 Modifies montmorillonite clays useful in high temperature composites.1
Forms regioselective halogenation reagent by addition of Cl2 or Br2.2 1. Xie, W. et al. Chem. Mater. 2002, 14, 4837.
2. Cristiano, R. et al. J. Org. Chem. 2009, 74, 9027. OMPH073.4 Catalyst for dimerization of olefins.1 1. Sato, H. et al. Bull. Chem. Soc. Jpn. 1993, 66, 3079. OMPH079 With B(OMe)3 and Si(OEt)4 forms borophosphosilicate glasses by sol-gel.1 1. Canevali, C. et al. Chem. Mater. 2004, 16, 315. OMPH080 Reagent for SILAR deposition of CdSe-ZnSe core-shell quantum dots.1 1. Hao, J. et al. J. Chem. Soc., Chem. Commun., 2013, 49, 6346. OMPH080.2 F&F: Vol. 1, p 1238; Vol. 2, p 443; Vol. 3, p 117; Vol. 4, p 548; Vol. 5, p 525; Vol. 6, p 643, Vol. 7, p 403, Vol. 11, p 588; Vol. 12, p 550; Vol. 13, p 331; Vol. 15, p 352; Vol. 17, p 263. OMPH081 Employed in the cross-coupling of potassium silanolates with aryl and vinyl halides.1 1. Denmark, S. E.; Smith, R. C.; Tymonko, S. A. Tetrahedron 2007, 63, 5730. OMPT021 Precursor for Pt films by MOCVD at 200°.1
Employed in fluidized bed deposition of Pt on supports for heterogeneous catalysis.2
COD ligand readily replaced by phosphines.3 1. Hierso, J. et al. Chem. Mater. 2000, 12, 390.
2. Hierso, J. et al. J. Mol. Catal., A: Chem. 1998, 135, 321.
3. Smith, D. et al. Organometallics 2000, 19, 1427. OMRE047 Converts alkenes to epoxides.1,2 1. Herman, W. et al. J. Am. Chem. Soc. 1995, 117, 3231.
2. Sharpless, K. B. et al. J. Am. Chem. Soc. 1997, 119, 6189. F&F: Vol. 17, p 192. OMRU018 Employed in luminescent oxygen and pressure sensors.1,2 1. Zhao, Y. et al. Anal. Chem. 1999, 71, 3887.
2. Chen-Esterlit, Z. et al. Proc. SPIE 1999, 3602 (Adv. in Fluorescence Sens. Tech.), 156. OMRU083 F&F: Vol. 4, p 564; Vol. 5, p 740; Vol. 6, p 654; Vol. 10, p 141; Vol. 12, p 179, Vol. 13, p 107; Vol. 14, p 130; Vol. 16, p 126. OMSE028 F&F: Vol. 5, p. 272; Vol. 13, p. 125; Vol. 14, p. 177; Vol. 16, p. 152; Vol. 18, p. 151; Vol. 19, p. 140; Vol. 20, p. 157; Vol. 21, p. 182. OMSE080 Reagent for synthesis of 2-aminoalcohols.1 1. Ishizuka, T. et al. Tetrahedron 1993, 49, 1841. F&F: Vol. 5, p 518; Vol. 6, p 459; Vol. 7, p 286; Vol. 9, p 25, Vol. 13, p 26. OMSE082 Used in the generation of CdSe quantum dots.1 1. Washington, II, A.L.; Strouse, G. F. Chem. Mater. 2009, 21, 2770. OMTA075 Forms Ta3N5 films by CVD.1
In combination with O2, H2O forms Ta2O5 by CVD.2 1. Fix, R. et al. Chem. Mater. 1993, 5, 614.
2. Son, K. et al. J. Vac. Sci. Technol., A 1998, 16, 1670. OMTA084 CVD precursor for tantalum nitride barrier film.1 1. Yasuhara, S.; Kadokura, H. U.S. Patent 6,593,484, 2003. OMTI010 Reagent for one-electron reduction of epoxides.1
Reagent for rapid preparation of protected glycals.2 1. Gold, H. Synlett 1999, 159.
2. Schwartz, J. et al. J. Org. Chem. 1999, 64, 3987. OMTI012 Catalyst for conversion of lactones to lactols.1 1. Depré, D. et al. Org. Process Res. Dev. 2008, 12, 96. OMTI020 Catalyst for conversion of enynes to cyclopentenones.1 1. Hicks, F. et al. J. Am. Chem. Soc. 1996, 118, 9450. OMTI054 Reagent for substitution of alkenyl sulfones to form allyl arenes.1 1. Yoshida, K. et al. J. Am. Chem. Soc. 2003, 125, 2872. OMTI057 Charge generator for laser printers; sensitizer for reprographics.1 1. Haisch, P. et al. Adv. Mater. 1997, 9, 316. OMTI075 In combination with ammonia produces TiN by CVD.1 1. Yun, J. et al. Thin Solid Films 1998, 312, 14. OMTI080 Catalyzes the preparation of N-heterocycles via C-N bond formation.1 1. Shen, H.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 11473. OMTI083 Precursor to TiN by CVD.1 1. Shin, H. et al. Chem. Mater. 1997, 9, 76. OMTI085 F&F: Vol. 6, p 48; Vol. 10, p 130; Vol. 13, p 102; Vol. 14, p 120. OMZN017 For CVD of ZnS:Mn thin films for electroluminescent displays.1
Forms wide bandgap ZnO films by ALD.2 1. Topol, A. et al. J. Mater. Res. 2004, 19, 697.
2. Park, S. et al. J. Mater. Sci. 2004, 39, 2195. OMZN018 Review of carbozincation.1
Review of asymmetric addition of diorgaozinc reagents to aldehydes and prochiral ketones.2
Review of conjugate addition of organozinc reagents to a,b-unsaturated carbonyls.3 1. Murakami, K.; Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 278.
2. Binder, C. M.; Singaram, B. Org. Prep. Proc. Int. 2011, 43, 139.
3. Lopez, F.; Feringa, B. L. in Asymmetric Synthesis, Christmann, M.; Brase, S. Eds. Wiley and Sons. OMZR084 Effective in the functionalization of alkenes and alkynes.1,2 1. Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
2. Schwartz, J; Labinger, J. Angew. Chem., Intl. Ed. Engl. 2003, 5, 330. F&F: Vol. 6, p 176; Vol. 7, p 101; Vol. 8, p 84; Vol.9, p 104; Vol. 14, p 81. OMZR085 Catalyst for the conversion of enynes to bicyclic cylopentenones.1 1. Negishi, E. et al. J. Am. Chem. Soc. 1989, 111, 3336. F&F: Vol. 10, p 131; Vol. 14, p 122; Vol. 15, p 120. PAN-040 Catalyst for high clarity polyesters in combination with H3PO4/Co(OAc)2.1 1. Collander, D. et al. Eur. Patent 61414, 1982. PBL6190 Intermediate for PbTiO3 by sol-gel.1,2,3
Intermediate for PbZn alkoxide acetate.4 1. Budd, K. et al. Mater. Res. Soc. Symp. Proc. 1986, 73, 711.
2. Hayes, J. et al. Mater. Lett. 1987, 5(10), 396.
3. Ma, J. et al. Chem. Mater. 1991, 3, 1006.
4. Francis, L. Chem. Mater. 1990, 2, 645. PBL6193 Forms polymers useful as impregnants for sintered metals in nuclear application.1
Polymerizes at 694 nm.2 1. Seike, K. Jpn Kokai Tokkyo Koho 59,197,896, 1984.
2. Close, D. et al. Appl. Phys. Lett. 1969, 14, 1591. PBL6287 Fluoride free lead oxide films formed by CVD.1 1. Kriskyuk, V. et al. Chem. Vap. Dep. 1998, 4, 43. PBL6340 Luminescent properties in organic matrices.1 1. Burrows, H. Mater. Lett. 1988, 6, 191. PBL6360 Employed in sol-gel preparation of PZT powders.1 1. Schwartz, R. et al. Mater. Res. Soc. Symp. Proc. 1986, 73, 123. PBL6455 Selective oxidizing agent in organic synthesis (review).1
Arylates in presence of haloacids to yield lead triacetates.2 1. Wiberg, K. Oxidations in Organic Synthesis, pp 277-366.
2. Freeman, J. Ed. Organic Synthesis; Wiley & Sons: New York, 1990, Collect. Vol. 7, 229. F&F: Vol. 1, p 537; Vol. 2, p 234; Vol. 3, p 168; Vol. 4, p 278. PBL6458 Intermediate for PZT by CVD.1 1. Gao, Y. et al. J. Mater. Res. 1993, 8, 145. PBL6459 Employed in solution deposition of PZT ferroelectric thin films.1 1. Tuttle, B. et al. Mater. Res. Soc. Bull. 1996 21(6), 49. PBL6470 Employed in pyrolytic deposition of fluoride glass.1 1. Rüssel, C. J. Non-Cryst. Solids 1993, 152, 161. PDV-1635 Forms flexible polymer for 2 photon patterning of waveguides.1 1. Bichler, S. et al. Optical Materials, 2012, 34, 772. PP1-GC18 Reduces blood protein adsorption.1 1. Arkles, B. et al. In Silanes Surfaces & Interfaces; Leyden, D., Ed; Gordon & Breach: 1986; p 91. PP2-OE41 Aplication and reference data 1. Lien, V. et al. IEEE Photon. Technol. Lett. 2004, 16(6), 1525.
2. Jeong, J. et al. Organic Electronics 2011, 12, 2095. PP2-RG01 Aplication and reference data 1. Inglis, D. et al. Biomicrofluidics 2010, 4, 26504. PP2-RG03 Aplication and reference data 1. Goff, J. et al. MRS Proceedings 2014, 1626. PP2-RG07 Aplication and reference data 1. Schmid, H. et al. Macromolecules 2000, 33, 3042.
2. Odom, T. et al. Langmuir 2002, 18, 5314. PP2-RG09 Aplication and reference data 1. Goff, J. et al. Polymer Preprints 2012, 53(1), 486. PPR-OE43 Employed in microfluidics waveguides.1 1. Kee, J. et al. Optics Express 2009, 17(14), 11739. PSI-026 Forms clear aerogels.1 1. Tillotson, T. et al. In Better Ceramics Through Chemistry IV; MRS Proc. 1990; Vol. 180, p.309. PSIAL-007 Sol-gel intermediate for aluminum silicates.1 1. Boilot, J. P. In Better Ceramics Through Chemistry III; MRS Proc. 1988; Vol. 121, p.121. PSITI-019 Employed in formation of titania-silica aerogels.1
Forms micro- and mesopores through titanosilicates.2 1. Miller, J. et al. J. Mater. Chem. 1995, 5, 1759.
2. D'Amore, M. B.; Schwartz, S. J. Chem. Soc., Chem. Commun. 1999, 92, 121. PSS-1M01 Employed in CVD of silicon carbonitride films.1
Forms polycarbosilanes at elevated temperature.2 1. Scarlete, M. et al. US Patent 7,396,563, 2008. (label licensed Gelest Product)
2. Yajima, S. et al. J. Mater. Sci. 1978, 13, 2569. SIA0025.0 >280° forms acetoxytriethoxysilane with extrusion of ethylene.1 1. Ezbiansky, K. A. et al. Chemical Processing of Dielectrics, Insulators & Electronic Ceramics, MRS Proc. 2000; Vol. 606, p.251. SIA0090.0 Acetolysis of polydimethylsiloxane copolymers allows acrylation for photocrosslinking.1 1. Bouten, B. et al. Eur. Polym. J. 1995, 31,1173. SIA0100.0 Forms sol-gel derived epoxidation catalyst in combination with titanium diisopropoxide bispentanedionate.1 1. Müller, C. et al. Catal. Lett. 2000, 64(1), 9-14, DOI 10.1023/A:109074617565 SIA0130.0 Silyl building block.1 1. Larson, G. et al. Synth. Comm. 1990, 20, 1095. SIA0180.0 Used to stabilize Stober silica suspensions.1 1. Park, B. et al. J. Mater. Sci. 1992, 27, 5692. SIA0198.0 Employed in fabrication of photoimageable, low shrinkage multimode waveguides.1 1. Xu, C. et al. Chem. Mater. 1996, 8, 2701. SIA0200.0 Employed in optical fiber coatings.1
In combination with dipodal silane, SIB1833.0, increases strength and hydrolytic stability of dental composites.2 1. Yokoshima, M. et al. Chem. Abstr. 113, 15746d; Jap. Pat. 02133338, 1990.
2. Matinlinna, J. et al. Acta Odontol. Scand. 2012, 70, 405. SIA0325.0 Forms silica bonded phases for reverse phase chromatography.1 1. Yang, S. S.; Gilpin, R. K. Anal. Chem. 1988, 59, 2750. SIA0400.0 Coupling agent for acrylic coatings for glass containers.1 1. Hashimoto. Y. et al. Eur. Pat. Appl. EP 289,325, 1988. SIA0433.0 Used in the enantioselective allylation of aldehydes and imines.1,2 1. Kinnaird, J. W. A. et al. J. Am. Chem. Soc. 2002, 124, 7920.
2. Berger, R. et al. J. Am. Chem. Soc. 2003, 125, 9596. SIA0440.0 Grignard is a nucleophilic hydroxymethylating agent.1 1. Tamao, K. et al. Tetrahedron Lett. 1984, 25, 4249. SIA0445.0 Pt catalysts induce autopolymerization or may cross-couple with other olefins.1 1. Lee, B. et al. Main Group Chemical News 1995, 1, 53. SIA0460.0 Reagent for steroid derivatization for GC/MS analysis.1,2
Used in intramolecular, stereoselective allylation of hemiacetals.3 1. Philippou, G. J. Chromatogr. 1976, 129, 384.
2. Poole, C. F.; Zlatkis, A. J. Chromatogr. Sci. 1979, 17, 115.
3. Esteban, J. et al. Org. Lett. 2008, 10, 4843. SIA0461.0 Stereoselective α-hydroxyallylation reagent.1 1. Tamao, K. et al. J. Org. Chem. 1987, 52, 957. SIA0464.0 Dry-development resist produced by plasma polymerization.1 1. Fujitsu, Chem. Abstr.101, 31148n; Jap. Patent 59013323, 1984. SIA0480.0 Regioselective silylating agent.1
For the S-allylation of sulfides.2
Can be isomerized to the enol silyl ether of propanal.3 1. Chan, T. et al. J. Organomet. Chem. 1979, 179, C24.
2. Vedejs, E. et al. J. Org. Chem. 1981, 46, 3353.
3. Fielding, J.; Roberts, B. P. Tetrahedron Lett. 2001, 42, 4061. SIA0520.0 Review of synthetic utility.1
Effects asymmetric allylation of aldehydes after reaction with chiral diols.2
Used in the highly enantioselective allylation of aromatic aldehydes.3,4
Enantioselectively allylates aryl aldehydes with high ee values.5
Undergoes enantioselective allylation of aldehydes to form homoallylic alcohols.6
Allylates carbonyls with base catalysis as opposed to allyltrimethylsilane (SIA0555.0), which requires Lewis acid catalysis.7
Chiral Phosphoramides catalyze the enantioselective allylation of aromatic, heteroaromatic, as well as cinnamyl aldehydes.8 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 10-14.
2. Wang, Z. et al. J. Chem. Soc., Chem. Commun. 1996, 2261.
3. Shimada. T. et al. Org. Lett. 2002, 4, 2799.
4. Malkov, A. et al. Org. Lett. 2002, 4, 1047.
5. Simonini, V. et al. Adv. Synth. Catal. 2008, 350, 561.
6. Massa, A. et al. Tetrahedron: Asymmetry 2009, 20, 202.
7. Kobayashi, S.; Nishio, K. Tetrahedron Lett. 1993, 34, 3453.
8. Denmark, S. E. et al. J. Org. Chem. 1994, 59, 6161. SIA0525.0 Extensive review on the use in silicon-based cross-coupling reactions.1 1. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. Ed., John Wiley and Sons, 233, 2011. SIA0535.0 Alkylated by primary alkyl bromides with greater regiospecificity than allyltrimethylsilane.1 1. Muchowski, J. et al. Tetrahedron Lett. 1985, 26, 5375. SIA0540.0 Allylation of ketones, aldehydes and imines with dual activation of a Lewis Acid and fluoride ion.1
Used in the regioselective generation of the thermodynamically more stable enol trimethoxysilyl ethers, which in turn are used in the asymmetric generation of quaternary carbon centers.2
Converts arylselenyl bromides to arylallylselenides.3
Allylates aryl iodides.4 1. Yamasaki, S. et al. J. Am. Chem. Soc. 2002, 124, 6536.
2. Ichibakase, T. et al. Tetrahedron Lett. 2008, 49, 4427.
3. Bhadra, S. et al. J. Org. Chem. 2010, 75, 4864.
4. Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64, 1684. F&F: Vol 18, p 14; Vol 19, p 360; Vol 20, p 85; Vol 21, p 3, Vol 12, p 395 SIA0555.0 Key reviews.1,2,3,4
Carries out deoxygenative allylation of benzylic alcohols.10
Allylates lithium alkoxides w/ loss of the lithium oxide.11
Forms benzylic homoallylic alcohols in a 3-component reaction w/ aldehydes.12
Diallylates ketones via their ketals.13
Undergoes polymerization with zirconocene complexes.5
Provides functional termination of living carbocationic polymerized polyisobutylenes.6
Allylates dioxolanes.7
Allylates imines under fluoride catalysis.8
Provides alternative for the formation of trans-allyl-2,3-O-isopropylidene-protected pyrrolidines.9 1. Handbook for Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 14-24.
10. De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 8345.
11. Kabalka, G. W. et al. Organometallics 2007, 26, 4112.
12. Kataki, D.; Phukan, P. Tetrahedron Lett. 2009, 50, 1958.
13. Galy, N. et al. Tetrahedron 2011, 67, 1448.
2. Weber, W. In Silicon Reagents for Organic Synthesis; Springer-Verlag: 1983, p173.
3. Fleming, I. Synthesis 1979, 761.
4. Hosomani, N. Acc. Chem. Res. 1988, 21, 200.
5. Habane, S. et al. Macromol. Chem. Phys. 1998, 199, 2211.
6. Wilczek, L. et al. J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 3255.
7. Dussault, P. H.;Liu, X. Org. Lett. 1999, 1, 1391.
8. Weng, D. K. et al. J. Org. Chem. 1999, 64, 4233.
9. De Armas, P. et al. Org. Lett. 2000, 3, 3513. SIA0575.0 Provides stereoselective synthesis of dienes.1 1. Ikeda, Y. et al. Bull. Chem. Soc. Jpn. 1986, 59, 657. SIA0585.0 Reaction with fluoroalkanoyl peroxides yields fluorinated siloxanes.1 1. Sawada, H. et al. Chem. Abstr. 115, 256270k; Yukagaku 1991, 40, 730. SIA0588.0 Coupling agent for polyimides.1
Photochemically sensitive (194nm).2
Forms self assembled monolayers.3
Reagent for charge heterogeneity in micropatterning.4 1. Arkles, B. et al. Modern Plastics 1980, 57, 64.
2. Dressick, W. et al. Thin Solid Films 1996, 284, 568.
3. Harnett, C. et al. Appl. Phys. Lett. 2000, 76, 2466.
4. Chen, J. et al. Nano Lett. 2002, 2, 393. SIA0591.0 Used in the immobilization of copper (II) catalyst on silica.1
Used together w/ SID3396.0 to anchor PdCl2 catalyst to silica for acceleration of the Tsuji-Trost reaction.2 1. Wu, Q.; Wang, L. Synthesis 2008, 2007.
2. Noda, H. et al. Angew. Chem., Int. Ed. Engl.2012, 51, 8017. SIA0594.0 Employed in immobilization of DNA.1
Employed for immobilization of PCR primers on beads.2 1. Kneuer, C. et al. Int'l. J. Pharmaceutics 2000, 196, 257.
2. Andreadis, J. et al. Nuc. Acid Res. 2000, 28, E-5. SIA0596.0 Reacts with nitrourea to form corresponding α-silylurea.1
Forms imines which when reacted with fluoride ion generate 2-aza-allylanion chemistry.2,3,4
Form imines which are precursors to imidazolidines.5,6 1. Seyferth, D. et al. J. Organomet. Chem. 1972, 44, 279.
2. Achiwa, K. et al. Chem. Lett. 1984, 2041.
3. Tsuge, O. et al. Bull. Chem. Soc. Jpn. 1986, 59, 2537.
4. Imai, N. et al. Chem. Pharm. Bull. 1987, 35, 2085.
5. Achiwa, K.; Sekiya, M. Chem. Lett. 1981, 1213.
6. Achiwa, K. et al. Chem. Pharm. Bull. 1983, 31, 3939. SIA0599.1 Coupler for silica-poly(phenyleneterephthalamide) composite films.1
Together with phenyltrimethoxysilane, SIP6822.0, can be used to increase the dispersibility of mesoporous silica.2 1. Mark, J. et al. J. Mater. Chem. 1997, 7, 259.
2. Banet, P. et al. Langmuir 2008, 24, 9030. SIA0604.0 Employed in vapor phase derivatization of porous silica.1 1. Brandhuber, D. et al. J. Mater. Chem. 2005, 15, 3896. SIA0605.0 Vapor phase deposition >150˚ on silica yields high density amine functionality.1 1. Ek, S. et al. Langmuir 2003, 19, 3461. SIA0610.0 Effects imobilization of enzymes.1
Used to bind Cu(salicylaldimine) to silica.2 1. Enzymes 1976, 84, 55915.
2. Murphy, E. F. et al. Inorg. Chem. 2003, 42, 2559. SIA0611.0 Used to immobilize Cu and Zn Schiff base precatalysts for formation of cyclic carbonates.1 1. Tasci, Z.; Ulusoy, M. J. Organomet. Chem. 2012, 713, 104. SIA0740.0 Starting point for alkoxyfunctional sheet polymers.1
Starting point for hydridosilane functional sheet polymers.2 1. Yeh, L. et al. Polym. Prepr. 1991, 32(3), 508.
2. Specht, K. et al. Appl. Clay Sci. 2010, 47, 212. SIA0775.0 Review of synthetic utility.1
Intermediate for trimethylsilyltriazoles.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 657.
2. Tsuge, O. et al. Chem. Lett. 1983, 1131. SIA0777.0 Used with click chemistry to introduce and immobilize discrete complexes onto the SBA-15 surface.1
Used in the preparation of poly-L-lysine to silica nanoparticles.2 1. Nakazawa, J. et al. J. Am. Chem. Soc. 2012, 134, 2750.
2. Kar, M. et al. Langmuir, 2010, 26, 5772. SIB0960.0 Intermediate for cyanoaminosilanes.1
Used in the preparation of trifluoromethylated azomethine ylide.2 1. Padwa, A. et al. J. Org. Chem. 1985, 50, 4006.
2. Tran, G. et al. J. Org. Chem. 2012, 77, 11071. SIB0962.0 Useful for the preparation of benzyldimethylsilyl derivatives capable of cross-coupling reactions.1,2 1. Zhao, Z.; Snieckus, V. Org. Lett. 2005, 7, 2523.
2. Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003, 5, 1895. SIB0964.0 Intermediate for aminosubstituted vinylsilanes and pyrollidones.1
Useful for the preparation of benzyldimethylsilyl derivatives capable of cross-coupling reactions.2 1. Mlyra, K. et al. Org. Lett. 2000, 2, 385.
2. Singh, R.; Singh, G. C.; Ghosh, S.K. Eur. J. Org. Chem. 2007, 5376. SIB0966.0 Forms chiral pyrrolidines by asymmetric 1,3-dipolar addition.1 1. Kotain, L. et al. Org. Process Res. Dev. 2005, 9, 193. SIB0968.0 In combination with TMS triflate cleaves β-lactams to chiral β-amidocyanides.1
With fluoride effects ring-opening polymerization of caprolactone.2 1. Kita, Y. et al. J. Org. Chem. 1994, 59, 938.
2. Endo, T. et al. Jap. Pat. App. 04283591, 1991; Chem. Abstr. 118,1030208. SIB0973.0 Source of benzyl anions.1 1. Benneteau, B. et al. Bull. Chem. Soc. Fr. 1985, 90, 11. SIB0992.0 Undergoes ring-opening metathetic polymerization (ROMP) with RuCl2(P(C6H5)3)3.1 1. Finkelstein, E. 10th Int'l Organosilicon Symp. Proc. 1993, P-120. SIB1027.0 Forms metal chelating polymers by reaction with azomethine complexes.1 1. Marcu, M. et al. J. Appl. Organometallic Chem. 2003, 17, 693. SIB1042.0 Review of synthetic utility.1
Reagent for protection of primary amines, including amino acids.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 48-50.
2. Djuric, S. et al. Tetrahedron Lett. 1981, 22, 1787. SIB1048.2 Forms cyclic derivatives of polyalkyleneoxides suitable for anionic copolymerization.1 1. Zundel, T. et al. Macromol. 1998, 31, 2724. SIB1058.0 Silylates capillary GC columns imparting polarity.1 1. Blum, W. J. High Resol. Chrom., Chromatog. Comm. 1986, 9, 120. SIB1068.0 Silylates diamines to cyclic diaminosilanes.1 1. Schwartz, E. et al. J. Org. Chem. 1981, 50, 5469. SIB1069.0 ALD precursor for HfSiOx dielectric films.1 1. Katamreddy, R. et al. J. Electrochem. Soc. 2008, 155, G163. SIB1073.0 Review of synthetic utility.1
Protecting group for aromatic amines.2
Used to prepare a 2-thia-1,5-disilacyclopentane, which transfers sulfur.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 50-51.
2. Guggenheim, T. L. Tetrahedron Lett. 1984, 25, 1253; F&F: 12, 476.
3. Guggenheim, T. L. Tetrahedron Lett. 1987, 28, 6139. SIB1075.0 Crosslinking agent for deep UV and EB resist applications.1
Component in self-sealing refrigerant systems.2 1. Irmscher, M. et al. J. Photopolym. Sci. Technol. 1996, 9, 497.
2. Packo, J. J.; Bailey, D. L. U.S. Patent 4,379,067, 1983. SIB1080.0 Undergoes BuLi-catalyzed anionic polymerization.1 1. Stober, M. et al. J. Org. Chem. 1967, 32, 2740. SIB1084.0 Acetylenes undergo dehydrogenative double silylation to yield cyclics.1
Aldehydes undergo dehydrogenative double silylation to yield disila-2-oxacyclohexanes.2
Reacts with ω-hydroxycarboxylates with Rh to form lactones.3
Employed in the high-yield reduction of amides to amines in the presence of other reducible groups.4 1. Tanaka, M. et al. Bull. Soc. Chim. Fr. 1993, 129, 667.
2. Uchimaru, Y. et al. Organometallics 1992, 11, 2639.
3. Mukaiyama, T. et al. Chem. Lett. 1997, 2, 18.
4. Hanada, S. et al. J. Am. Chem. Soc. 2009, 131, 15032. F&F: Vol. 20, p 40. SIB1091.0 Analogous structures form ruthenium(II) complexes with high selectivity for hydrogenation and non-leachable binding to solid supports.1 1. Wu, D. et al. Chem. Mater. 2005, 17, 3951. SIB1092.0 Contributes to high diffraction efficiency in holographic media.1 1. Cho, Y. et al. Sci. Tech. Adv. Mater. 2005, 6, 435. SIB1097.0 Used to make silicon-bridged cyclopentadithiophene-based polymers that exhibit a high degree of luminescence quenching and low band gap silole-containing polythiophenes.1,2 1. Huang, J.-H. et al. J. Phys. Chem. C. 2011, 115, 2398.
2. Hou, J. et al. J. Am. Chem. Soc. 2008, 130, 16144. SIB1120.0 Employed in NIMS direct desorption MALDI analysis.1 1. Woo, H. et al. Nature Protocols 2008,3, 1341; DOI:10.1038/nprot.2008.110. SIB1130.0 End-capper for carbinol-terminated silicones used in contact lenses.1 1. Deichert, W. et al. U.S. Patent 4,153,641, 1979; 4,189,546, 1980. SIB1135.0 Intermediate for silphenylene polymers.1 1. Dvornic, P.; Lenz, R. High Temperature Siloxane Elastomers; Huthig & Wepf: Heidelberg, Germany, 1990. SIB1140.0 Employed in surface modification for preparation of oligonucleotide arrays.1 1. McGall, G. et al. Proc. Natl. Acad. Sci. 1996, 93, 1355. SIB1145.0 Hydroxypropyl group undergoes rearrangements.1 1. Speier, J. et al. J. Org. Chem. 1960, 25, 1637. SIB1205.0 Intermediate for zirconocene copolymerization catalyst.1 1. Lehtinen, C. et al. Eur. Polym. J. 1997, 33, 115. SIB1250.0 Forms permselective membranes.1 1. Jpn. Kokai Tokkyo Koho, 1984, JP 59209610 A 19841128 SIB1385.0 End-capper for telochelic polymers used in contact lenses.1 1. Kunzler, J. Trends Polym. Sci. 1996, 4, 50. SIB1520.2 Lithium reagent employed in stereocontrolled oxidation.1 1. Lee, T. et al. Org. Lett. 2001, 3, 3337. SIB1612.0 Intermediate for carbosilazane polymers.1 1. Huggins, J. Ger. Offen. DE 114219A1, 1992. SIB1760.0 Reductive cyclization yields siloles, oligosiloles.1
Useful in silicon-mediated Sonogashira cross-coupling reactions.2 1. Tamao, K. J. Am. Chem. Soc. 1994, 116, 11715.
2. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIB1810.0 Forms 6-arm stars with anionic polystyrene.1 1. Frater, D. et al. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 587. SIB1815.0 Intermediate for “dumbbell” POSS structures.1 1. Araki, H. et al. Polym. J. 2012, 44, 340. SIB1816.6 Forms phenylene-bridged silica with ordered pore walls.1,2 1. Inagaki, S. et al. Nature 2002, 416, 304.
2. Wang, W. et al. Chem. Mater. 2003, 15, 4886. SIB1817.0 Employed in corrosion resistant coatings/primers for steel and aluminum.1,2
Sol-gels of α,ω-bis(trimethoxysilyl)alkanes reported.3
Component in evaporation-induced self-assembly of mesoporous structures.4
Forms mesoporous, derivatizeable molecular sieves.5,6
Hydrolysis kinetics studied.7 1. Van Ooij, W. et al. J. Adhes. Sci. Technol. 1997, 11, 29.
2. Van Ooij, W. et al. Chemtech 1999, 28, 3302.
3. Loy, D. A. et al. J. Am. Chem. Soc. 1999, 121, 5413.
4. Lu, Y. et al. J. Am. Chem. Soc. 2000, 122, 5258.
5. Molde, B. et al. Chem. Mater. 1999, 11, 3302.
6. Cho, E. et al. Chem. Mater. 2004, 16, 270.
7. Diaz-Benito, B. Colloids and Surfaces A: Physicochemical Aspects 2010, 369, 53. SIB1820.0 Forms ethylene-bridged mesoporous silicas.1 1. Vercaemst, C. et al. Chem. Mater. 2009, 21, 5792. SIB1821.0 Forms methylene-bridged mesoporous structures.1
Forms modified silica membranes that separate propylene/propane mixtures.2 1. Zhang, W. et al. Chem. Mater. 2005, 17, 6407.
2. Kanezashi, M. et al. J. Membr. Sci. 2012, 415-416, 478. SIB1824.0 Sol-gels of α,ω-bis(trialkoxysilyl)alkanes reported.1 1. Loy, D.A. et al. J. Am. Chem. Soc. 1999, 121, 5413. SIB1824.56 Forms thermally labile bridged silsesquioxanes.1 1. Loy, D.A. et al. Chem. Mater. 1999, 11, 3333. SIB1824.57 Forms thermally labile bridged silsesquioxanes.1 1. Loy, D.A. et al. Chem. Mater. 1999, 11, 3333. SIB1824.6 Intermediate for mesoporous silicas with acidic pores.1 1. Alauzun, J. et al. J. Am. Chem. Soc. 2006, 128, 8718. SIB1824.82 In combination with sulfolane forms gel electrolyte for solar cells.1
Forms proton conducting hybrid organic-inorganic polymer electrode membranes.2 1. Stathatos, E. et al. Adv. Funct. Mater. 2004, 14, 45.
2. Honma, I. et al. J. Membr. Sci. 2001, 185, 83. SIB1824.84 Proton conducting polymer electrolyte.1 1. Ghosh, B. et al. Chem. Mater., 2010, 22, 1483. SIB1825.0 Adhesion promoter for PVD copper on parylene.1 1. Pimanpang, S. et al. J. Vac. Sci. Technol. A 2006, 24, 1884. SIB1827.0 Forms films on electrodes for determination of mercury.1 1. Guo, Y. et al. J. Pharm. Biol. Anal. 1999, 19 175. SIB1829.0 Employed in the fabrication of luminescent molecular thermometers.1 1. Brites, C. et al. New J. Chem. 2011, 35, 1173. SIB1830.0 Employed in fabrication of multilayer printed circuit boards.1 1. Palladino, J. U.S. Patent 5,073,456, 1991. SIB1831.0 Forms resins that absorb organics from aqueous media.1 1. Edmiston, P. et al. Sep. Purif. Technol. 2009, 66, 532. SIB1832.0 Sol-Gels of α,ω-bis(trimethoxysilyl)alkanes reported.1 1. Loy, D.A. et al. J. Am. Chem. Soc. 1999, 121, 5413. SIB1833.0 Low level incorporation with acryloxypropyltrimethoxysilane, SIA0200, increases strength and hydrolytic stability of dental composites.1
Increases elastic recovery of aerogels.2 1. Matinlinna, J. et al. Acta Odontol. Scand. 2012, 70, 405.
2. Randall, J. et al. J. Mater. Chem., A 2013, 1, 6642. SIB1834.1 Forms thin film environments for metal ions.1 1. He, J. et al. RIKEN Review 2002, 45, 27. SIB1836.0 Precursor to cyclobutanedione.1
Undergoes Aldol condensations with carbonyls.2
Undergoes photocycloadditions.3 1. Dennis, J. et al. In Organic Synthesis; Wiley & Sons: New York, 1990; Collect. Vol. 7, 112.
2. Shimada, J. et al. J. Am. Chem. Soc. 1984, 106, 1759.
3. Hijfte, L. et al. Tetrahedron 1984, 40, 4371. SIB1840.0 Converts α,β-unsaturated aldehydes to acetals.1,2 1. Hwu, J. et al. J. Org. Chem. 1987, 52, 188.
2. Tsunoda, T. Tetrahedron Lett. 1980, 21, 1357. SIB1844.0 Trisiloxane reducing agent similar to SIT8721.0.1 1. Drew, M. D. et al. Synlett 1997, 989. SIB1846.0 Review of synthetic utility.1 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 58-72. F&F: Vol. 13, p 34; Vol. 16, p 285; Vol. 20, p 50; Vol. 21, p 62. SIB1850.0 Key review.1
Key review.2
Used to prepare 1,2-bis(aryl)acetylenes.3
Reacts with internal acetylenes to form 1,2,4,5-tetrasubstituted benzenes.4
Useful in silicon-mediated Sonogashira cross-coupling reactions.5
Used to prepare 4-alkynylthiazoles.6 1. Weber, W. In Silicon Reagents for Organic Synthesis; Springer-Verlag: 1983, p129.
2. Vollhardt, P. Acc. Chem. Res. 1977, 10, 1.
3. Nishihara, Y. et al. J. Org. Chem. 2000, 65, 1780.
4. Li, S. et al. Org. Lett. 2009, 11, 3318.
5. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011.
6. Arunkukmar, K. et al. Tetrahedron Lett. 2012, 53, 3885. SIB1852.0 Synthetic intermediate with readily cleavable silyl groups.1 1. Verboom, W. et al. Synthesis 1981, 807. SIB1852.8 Intermediate for polydimethylphosphazenes.1 1. Neilson, R. et al. Inorg. Chem. 1982, 21, 3568. SIB1853.5 Monomer for substitution polymerization with fluoroaromatics (byproduct Me3SiF).1,2,3 1. Kricheldorf, H. et al. J. Polym. Sci., Polym. Chem. Ed. 1983, 21, 2283.
2. Takekoshi, T. et al. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 759.
3. Herbert, C. et al. Macromolecules 1996, 29, 7709. SIB1854.0 Stable crystalline form of butadiyne; synthon for heterocycles.1
Used to prepare multidentate 1,2,3-triazole chelate ligands.2
Undergoes 6+2 cycloaddition with cycloheptatriene.3 1. Jacobs, P. M. et al. Heterocycl. Chem. 1977, 14, 1115.
2. Fuller, T. J. et al. Organometallics 2008, 27, 5430.
3. Hilt, G. et al. Synthesis 2009, 3305. SIB1856.0 Highly reactive equivalent of cyanamide; converts quinones to dicyanoquinodiimines.1
Trans-silylation reaction with methyltrichlorosilane yields Si-C-N ceramic intermediate.2 1. Aumüller, A. et al. Angew. Chem. 1984, 96, 437.
2. Gabriel, A. et al. Chem. Mater. 1999, 11, 412. SIB1857.6 Employed in reductive ALD of titanium.1 1. Winter, C. et al. 14th Int'l Conf. on Atomic Layer Deposition 2014, 8. SIB1857.9 Reacts w/aryl iodides to form (E)-β-trimethylsilylstyrenes.1 1. Karabelas, K.; Hallberg, A. J. Org. Chem. 1989, 54, 1773. SIB1859.0 Review of synthetic utility.1
Lithiated derivative reacts w/ aldehydes and ketones to give hydroxyimines.2,3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 75-76.
2. King, F. D. et al. J. Chem. Soc., Chem. Commun. 1978, 351.
3. Hoffmann, R. V.; Buntain, G. A. Synthesis, 1987, 831. F&F: Vol. 6, p 58. SIB1862.0 Reagent for the preparation of β-ketoacids.1 1. Schmidt, V. et al. Monatsh. Chem. 1967, 98, 1492. SIB1863.0 Exhibits very high excess electron mobility: 63 cm2/V s.1
For synthesis of silylated olefins by Peterson olefination of aldehydes and ketones.2 1. Holroyd, R. et al. Nucl. Instrum. Methods Phys. Res., Sect. A 1997, 390, 233.
2. Carter, M. et al. J. Chem. Soc., Chem. Commun. 1976, 679. SIB1863.3 Opens epoxides with high regioselectivity.1
Forms imine with formaldehyde that does not readily trimerize.2 This aldimine can be used to form β-lactams.3,4
Reacts with ketones for form imines with (E)-isomer selectivity.5 1. Constantieux, T. et al. Synlett 1998, 510.
2. Capperucci, A. et al. J. Organomet. Chem. 1993, 458, C1.
3. Palomo, C. et al. Ang. Chem., Int. Ed. Engl. 1996, 35, 1239.
4. Palomo, C. et al. J. Chem. Soc., Chem. Commun. 1997, 233.
5. Palomo, C. et al. J. Org. Chem. 1997, 62, 2070. SIB1864.0 Review of synthetic utility.1
Grignard reagent can be used to prepare sterically hindered aryl systems.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 461-463.
2. Fukukawa, K.-A. et al. Macromolecules,2005, 38, 263. SIB1867.0 Intermediate for synthesis of 3,4-bis(trimethylsilyl)thiophene.1
Synthetic equivalent of (methylthio)methyl anion in fluoride-promoted reactions.2 1. Ye, X. et al. J. Org. Chem. 1997, 62, 1940.
2. Hosomi, A. et al. Synlett 1991, 557. SIB1868.0 Key reviews.1,2,3
Reagent for Bayer-Villiger oxidation of ketones.4
Epoxidizes olefins with methyltrioxorhenium.5
With NaH converts benzylic nitro compounds to corresponding carbonyls.6
Oxidizes pyridines to pyridine-n-oxides in presence of Rhenium catalyst.7 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 79-81.
2. Ricci, A. et al. in Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich, Co,1996; 3, p 63.
3. Davies, A. G. Tetrahedron 2007, 63, 10385.
4. Suzuki, M. et al. J. Org. Chem. 1982, 47, 902.
5. Fenelli, S. U.S. Patent 5,633,391, 1997.
6. Snaki, S. et al. Synth. Commun. 1999, 29, 4321.
7. Copéret, C. et al. Tetrahedron Lett. 1998, 39, 761. SIB1870.0 Reacts with bis(acyl chlorides) to form polyanhydrides.1 1. Kricheldorf, H. et al. Makromol. Chem., Rapid Commun. 1990, 11, 83. SIB1871.0 Review of synthetic utility.1
Intermediate for preparation of CdSe quantum dots.2
Forms luminescent red l-lll-lV quantum dots.3
Converts aldehydes to selenoaldehydes under n-BuLi catalysis.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 82-83.
2. Murray, C. et al. J. Am. Chem. Soc. 1993, 115, 8706.
3. Allen, P. et al. J. Am. Chem. Soc. 2008, 139, 9240.
4. Segi, M. et al. J. Am. Chem. Soc. 1988, 110, 1976. SIB1872.0 Useful for the preparation of "molecular wire" - acyclic azathienes.1 1. Zibarev, A. et al. Heteroat. Chem. 1990, 1, 443. SIB1876.0 Review on organosilane protecting groups.1
Silylation reagent for preparing derivatives of amino acids.2 1. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
2. Stalling, D. et al. Biochem. Biophys., Res. Comm. 1968, 31, 616. SIB1878.0 Review on organosilane protecting groups.1 1. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014. F&F: Vol. 16, p 82. SIB1878.6 Reagent for preparing polymer-bound, fluoride-labile benzydryl crosslinkers.1 1. Routledge, A. et al. Tetrahedron Lett. 1998, 38, 8287. SIB1890.0 Review of synthetic utility.1
Modifies ITO electrodes allowing bonding of polyvinylpyridine.2
Forms oxasilacycles via a silylation/free-radical addition sequence. The resulting oxasilacycles can be oxidized and desilylated to diols.3
Used in a silicon-based templated cyclization to produce 1,4 diols.4,5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 85-92.
2. Privman, M. et al. J. Am. Chem. Soc. 2009, 131, 1314.
3. Newlander, K. A. et al. J. Org. Chem. 1997, 62, 6726.
4. Stork, G.; Kahn, M. J. Am. Chem. Soc. 1985, 107, 500.
5. Lejeune, J.; Lallemand, J. Y. Tetrahedron Lett. 1992, 33, 2977. SIB1891.6 Tethered initiator for ATRP on silicon surfaces.1 1. Matyjaszewski, K. et al. Macromolecules 1999, 32, 8716. SIB1892.0 Intermediate for trimethylsilylmethanethiol.1 1. Noller, D. et al. J. Org. Chem. 1952, 17, 1393.; F&F: Vol. 11, p 576. SIB1906.0 Forms self-assembled monolayers which can be modified with pyridine ligands.1 1. Paulson, S. et al. J. Chem. Soc., Chem. Commun. 1992, 21, 1615. SIB1907.0 Reagent for preparation of terminal conjugated enynes.1
Used to prepare homopropargylic and allenyl alcohols.2 1. Gibson, A. et al. Synthesis 1991, 5, 414.
2. Liu, M.-J.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 13042. SIB1907.8 Forms SAMs on titanium, gold and silicon surfaces.1 1. Arkles, B. et al. J. Adhes. Sci. Technol. 2012, 26, 41. SIB1908.0 Self-assembled monolayers attach/orient polymer films.1
Treated surfaces can be functionalized with azide for "click chemistry".2 1. Menzel, H. et al. Gummi. Fasern. Kunstst. 1997, 50, 288.
2. Prakash, S. et al. Anal. Chem. 2007, 79, 1661. SIB1910.0 Review of synthetic utility.1
Starting material for preparation of α-trimethylsilylvinylketone.2
Starting material for preparation of trisubstituted olefins.3
Potential for cross-coupling protocols to yield α-substituted vinylsilanes.4
Reacts with dichlorocarbene followed by fluoride-promoted elimination to formcyclopropenes.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 109-110.
2. Stork, G. et al. J. Am. Chem. Soc. 1973, 95, 6152.
3. Miller, R. et al. J. Org. Chem. 1979, 44, 4623.
4. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011.
5. Billups, W. E. et al. Tetrahedron Lett. 1984, 25, 3935. F&F: Vol. 7, p 193; Vol. 8, p 56, p 515; Vol. 9, p 56; Vol. 10, p 442; Vol. 11, p 286. SIB1910.1 Potential for cross-coupling protocols to yield β-substituted vinylsilanes.1
Starting point for substituted vinyl silanes 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011.
F&F: Vol. 11, p 82. SIB1927.2 Converted to chiral reagent for the enantioselective crotylation of aldehydes.1 1. Kim, H.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc. 2011, 133, 6517. SIB1927.4 Converted to chiral reagent for the enantioselective crotylation of aldehydes.1 1. Kim, H.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc. 2011, 133, 6517. SIB1932.4 Coupling agent for nanoparticles.1
Interlayer bonding agent for anti-reflective lenses.2 1. Arkles, B. et al. In Silanes and Other Coupling Agents; Mittal, K., Ed.; 2004; Vol. 3, p.179.
2. Su, K. et al. U.S. Patent Appl. 2012 2672,790, 2012. SIB1933.55 Reagent for anion relay chemistry.1 1. Smith, A. et al. J. Am. Chem. Soc. 2012, 134, 4533. SIB1935.0 F&F: Vol. 4, p 57, p 176; Vol. 5, p 74; Vol. 6, p 78; Vol. 8, p 58; Vol. 9, p 77; Vol. 10, p 62; Vol. 11, p 88; Vol. 12, p 83. SIB1936.0 Reagent for anion relay chemistry.1 1. Smith, A. et al. J. Am. Chem. Soc. 2012, 134, 4533. SIB1938.0 Silylates phenols in presence of tris(pentafluorophenyl)borane.1
Precursor for SiC thin films by supersonic jet epitaxy.2 1. Blackwell, J. M. et al. J. Org. Chem. 1999, 64, 4887.
2. Boo, J. et al. Thin Solid Films 1998, 324, 124. SIB1939.3 Employed in high ee synthetic reactions.1 1. Colbert, F. Eur. J. Org. Chem. 2006, 8, 1117 SIB1939.5 Potential for the synthesis of silyl-protected butynol derivatives.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIB1939.62 Intermediate for statin synthesis.1 1. Heathcock, C. et al. J. Med. Chem. 1987, 30, 1858. SIB1940.0 Silylation reagent for alcohols under neutral or acidic conditions.1
Employed in preparative silylation of nucleotides.2 1. Veysoglu, T. et al. Tetrahedron Lett. 1981, 22, 1299.
2. Bigge, C. et al. J. Org. Chem. 1981, 46, 1994. SIB1941.0 Undergoes radical1,2 and anionic polymerization.3,4,5 1. Packirisamy, S. et al. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 2811.
2. Xu, Y. et al. Polymer 1991, 32, 3103.
3. Hirao, A. et al. Makromol. Chem., Rapid Commun. 1982, 3, 941.
4. Hirao, A. et al. Makromol. Chem. 1985, 186, 1157.
5. Ito, H. et al. Polym. Mater. Sci. Eng. Preprints 1993, 68, 12. SIB1955.0 Phosphinates olefins in presence of Bu4NF.1 1. Hayashi, M. et al. Tetrahedron Lett. 2004, 45, 9167. SIB1963.0 Review of synthetic utility.1
Reacts with aldehydes and ketones to form protected oximes.2
Can be used to generate nitrosoalkenes in the absence of nucleophiles.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 124-125.
2. Denmark, S. E. et al. J. Org. Chem. 1984, 49, 4741.
3. Denmark, S. E.; Dappen, M. S. J. Org. Chem. 1984, 49, 798. F&F: Vol. 2, p 85. SIB1965.0 Review of synthetic utility.1
Opens epoxides yielding t-butyldimethylsilyl protected β-isonitrile alcohols.2
Forms TBS-protected cyanohydrins in good yields.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 120.
2. Gassman, P. et al. J. Org. Chem. 1986, 51, 5010.
3. Golinski, M. et al. J. Org. Chem. 1993, 58, 159. SIB1966.0 Review of synthetic utility.1 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 125-127. SIB1966.3 Silylation reagent.1 1. Tanabe, Y. et al. J. Chem. Soc., Chem. Commun. 2002, 1628 SIB1967.0 Review of synthetic utility.1
Powerful silylation reagent and Lewis acid.2
Excellent promoter for gylcosidations, especially for trichloroacetimidates.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 127-135.
2. Review: Simchen, G. Advances in Silicon Chemistry; JAI Press: Greenwich, Co, 1991; Larson, G. L. Ed., Vol. 1, 189.
3. Roush, W. R. et al. Org. Lett. 1999, 1, 891; and Roush, W. R.; Narayan, S. Org. Lett. 1999, 1, 899. SIB1968.0 Review of synthetic utility.1
Due to steric bulk can be converted to α-silyl aldehydes,2 which can be converted to olefins with high stereoselectivity.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 135-138.
2. Barbero, A. et al. J. Chem. Soc., Perkin Trans 1 1995, 1525.
3. Barbero, A. et al. Synthesis 2000, 1223.
F&F: Vol. 6, p 81; Vol. 12, p 81. SIC2054.0 Siloxene occurs in 2 photoluminescent forms.1 1. Harle, W. et al. In "Tailor-made Silicon-Oxygen Compounds"; Corriu, R. et al. Ed.; Vieweg: 1995; p99. F&F: Vol. 6, p 510. SIC2058.2 Employed in OLED fabrication.1 1. DeMais, T. et al. SPIE Proc. 1998, 3476, 338 SIC2263.0 In combination with aminofunctional silanes forms amphoteric silicas.1 1. Han, L. et al. Chem. Mater. 2007, 19, 2860. SIC2264.6 Precursor for SrS:Ce thin film blue phosphors by CVD.1 1. Rees, W. et al. Chemical Aspects of Electronic Ceramic Processing, MRS Proc. 1998, 495, 83. SIC2268.5 Intermediate for H3SiCl; employed in CVD of SiN.1 1. Arkles, B. et al. U.S. Patent 5,968,611, 1999. SIC2270.0 Forms silsesquioxanes convertible to SiO2 films by thermal or UV methods.1 1. Arkles, B. et al. J. Sol-Gel Sci. Techn. 1997, 8, 465. SIC2275.0 Lithiated derivative reacts with aldehydes, ketones to form methylketones via epoxysilanes.1 1. Magnus, P. et al. J. Chem. Soc., Chem. Commun. 1978, 297. SIC2285.0 F&F: Vol. 16, p 71; Vol. 17, p 75; Vol. 21, p 129. SIC2286.5 F&F: Vol. 14, p 186. SIC2287.0 Review of synthetic utility.1
Readily forms Grignard reagent, which is useful for Peterson olefinations and as a masked hydroxyl moiety.2,3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 162-166.
2. Boons, G. J. P. H. et al. Tetrahedron Lett. 1989, 30, 229.
3. Rodgen, S. A.; Schaus, S. E. Org. Lett. 2006, 45, 4929. SIC2289.0 Hydrosilylation of dendrimers with unsaturated termination allows functionalization.1 1. Meijboom, R. et al. J. Organomet. Chem. 2004, 689, 987. SIC2290.0 Intermediate for flusilazole fungicide.1 1. Moburg, K. U.S. Patent 4,510,136, 1995. SIC2293.0 Forms stable Grignard reagent that after reaction and oxidation transfers a hydroxymethyl moiety.1 1. Tamao, K. et al. J. Org. Chem. 1983, 48, 2120. SIC2295.0 Employed in surface initiated ATRP polymerization.1 1. von Werner, T.; Patten, T. E. J. Am. Chem. Soc. 1999, 121, 7408. SIC2295.5 Employed as a high temperature coupling agent.1 1. Arkles, B. et al. Modern Plastics 1980, 57, 64. SIC2296.0 Employed in surface initiated ATRP of poly (N-isopropylacrylamide)1, poly(methyl methacrylate).2 1. Kikuchi, A. et al. Polymer Preprints 2005, 46, 124.
2. Kang, E. et al. Macromolecules 2005, 38, 7867. SIC2296.2 Modifies silica for high-throughput peptide synthesis.1 1. Houghten, R. et al. J. Am. Chem. Soc. 2005, 127, 8582. SIC2297.0 Reported to stimulate tissue growth.1 1. Voronkov, M. in Biochemistry of Silicon and Related Problems; Bendz, G., Ed.; Plenum, 1978, p 395. SIC2298.0 Building block for carbosilanes.1 1. Whitmarsh, C.; Interante, L. US Patent 5,153,295, 1992. SIC2298.4 Grignard reacts with chlorosilanes or intermolecularly to form carbosilanes.1 1. Brondani, D. et al. Tetrahedron Lett. 1993, 34, 2111. SIC2305.0 Reagent for Peterson olefination - conversion of cabonyls to olefins.1 1. Reviews: Anderson, R. Synthesis 1985, 717; Chan, T. Acc. Chem. Res. 1977, 10, 422. SIC2320.0 Annulation reagent - converts cyclic enones to fused methylene cyclopentanes.1 1. Knapp, S. et al. Tetrahedron Lett. 1980, 21, 4557. SIC2350.0 Cyclized intermediate can be converted to enoxysilacyclobutanes.1 1. Denmark, S. et al. J. Am. Chem. Soc. 1994, 116, 7026. SIC2417.0 Treated silica acts as etherification catalyst.1
Reagent for surface initiated ATRP.2
Employed in mesostructured fuel-cell membranes.3 1. Sow, B. et al. Microporous and Mesoporous Mat'ls. 2005, 79, 129.
2. Fukuda, J. et al. Macromolecules 2000, 33, 2870.
3. Pereira, F. et al. Chem. Mater. 2008, 20, 1710. SIC2420.0 Employed as a silylation reagent for photolithography substrates.1 1. Wilharm, P. et al. US Patent 5,162,559, 1992. SIC2430.0 Electrophilic acetonyl equivalent; used to prepare 1,4-dicarbonyls.1 1. Sakurai, H. et al. Tetrahedron Lett. 1980, 21, 2325. SIC2432.0 Forms acetylene on treatment with Me4NF.1 1. Cunico, R. J. Organomet. Chem. 1978, 162, 1. SIC2445.0 Forms mesoporous organosilica in combination with bis(triethoxysilyl)ethane.1 1. Wahab, M. et al. Microporous and Mesoporous Materials, 2004, 69, 19. SIC2452.0 Coupling agent for antibodies.1
Allows formation of electrostatic gated nanopore electrodes.2 1. Falipou, S. et al. Bioconjugate Chem. 1999, 10, 346.
2. Wang, G. et al. J. Am Chem. Soc. 2006, 128, 7679. SIC2453.7 Monomer for high temperature polar phases for GC.1 1. Kruppa, R. et al. U.S. Patent 4,063,911, 1977. SIC2460.0 Orients liquid crystals in display devices.1
Coupling agent for aramid fiber reinforced epoxy.2 1. Sharp, Chem. Abstr. 101,81758g; Jap. Patent JP 58122517, 1983.
2. Lechner, U. Chem. Abstr. 112, 218118x; Germ. Offen. DE 3820971, 1989. SIC2462.0 Reacts with ethylene oxide to give γ-hydroxy ketones.1
Reacts with aldehydes, acetals, and enones w/o Lewis acid catalysis in the presence of hexafluoro-2-propanol.2
Hydroboration/oxidation leads to trans-1,2-diols.3
Hydroboration/elimination converts silyl enol ethers to olefins.4 1. Lalic, G. et al. Tetrahedron Lett. 2000, 41, 763.
2. Ratnikov, M. O. et al. Angew. Chem., Int. Ed. Engl.2008, 47, 9739.
3. Larson, G. L. et al. J. Organomet. Chem. 1974, 76, 9.
4. Larson, G. L. et al. Tetrahedron Lett. 1975, 4005. SIC2480.0 Intermediate for melt-processable silsesquioxane-siloxanes.1
Employed in solid-phase extraction columns.2 1. Lichtenhan, J. et al. Macromolecules 1993, 26, 2141.
2. Tippins, B. Nature 1988, 334, 273. SIC2520.0 Employed in silica-supported purification of fullerenes.1 1. Nie, B. et al. J. Org. Chem. 1996, 61, 1870. SIC2552.0 Reacts with aldehydes, acetals, and enones w/o Lewis acid catalysis in the presence of hexafluoro-2-propanol.1 1. Ratnikov, M. O. et al. Angew. Chem., Int. Ed. Engl.2008, 47, 9739. SIC2568.0 Reaction with LiN(iPr)2 and CH2X2 provides 1,1-dimethyl-2-halosilacyclopentanes.1
Arylchlorosilyl derivatives used in cross-coupling to biaryls.2
Vinylchlorosilyl derivatives used in cross-coupling to 1,3-butadienes.3
Starting material for spirocyclic organosilanes.4 1. Matsumoto, K. Tetrahedron 1993, 49, 8487.
2. Denmark, S. E.; Wu, Z. Org. Lett. 1999, 1, 1495.
3. Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821.
4. Déjean, V. et al. Organometallics 2000, 19, 711. SIC2570.0 Review of synthetic utility.1
Undergoes insertion reactions.2
Undergoes polymerization.3
Undergoes reductive silylation of aldehydes.4
Reacts w/ aldehydes to form 3-substituted 1-sila-2-oxacycohexanes.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 261-262.
2. Matsumoto, K. et al. Tetrahedron Lett. 1990, 31, 6055.
3. Weyenberg, D. et al. J. Org. Chem. 1965, 30, 2618.
4. Hirano, H. et al. Org. Lett. 2006, 8, 483.
5. Takeyama, Y. et al. Tetrahedron Lett. 1990, 31, 6059. SIC2572.0 Review of synthetic utility.1
!ntermediate for enoxysilacyclobutanes.2
Precursor to various aryl and alkenylsilacyclobutanes suitable as a nucleophile in silicon-based cross-coupling.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 166-170.
2. Denmark, S. et al. J. Am. Chem. Soc. 1994, 116, 7026.
3. Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835. SID2662.6 Provides surface modification with enhanced hydrolytic stability.1 1. Singh, M. et al, Mater. Res. Proc., 2014, 1648 DOI:10.1557/opl.2014.257 SID2745.0 Cyclic polymerization forming linear [(sila-cyclohexane)methylene] polymers with Ziegler catalyst reported.1 1. Marvel, C. et al. J. Org Chem. 1960, 25, 1641. SID2754.0 Cyclized to 7-member ring using Schrock's catalyst.1 1. Forbes, M. et al. J. Am. Chem. Soc. 1992, 114, 10978. SID2780.0 Employed in sol-gel preparation of mullites.1,2 1. Boilot, J. P. In Better Ceramics Through Chemistry III; MRS Proc. 1988; Vol. 121, p.121.
2. Columban, P. J. Mater. Res. 1998, 13, 803. SID2790.0 Source for silicon dioxide by LPCVD.1,3
Precursor for poly(di-t-butoxysiloxane) photoimageable polymers.2 1. Smolinsky, G. et al. Mater. Lett. 1986, 4, 256.
2. Senkevich, J. et al. Chem. Mater. 1999, 11, 1814.
3. Sakata, M. et al. J. Photopolymer Sci. and Tech. 1992, 5, 181. SID2795.0 Lithiation leads to polyhedral silazanes.1
Forms silicon nitiride films by CVD at 550-600°C.2 1. Becker. G. et al. In Organosilicon Chem. III; Auner, N.; Weiss, J., Eds; Wiley-VCH: 1998; p. 346.
2. Gumpher, J. et al. J. Electrochem. Soc. 2004, 151, G353. SID3120.0 Review of synthetic utility.1
Reagent for selective silylation of internal alcohols or diols.2
Used as a stable reagent for linking two organic moieties.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 198-201.
2. Tanino, K. et al. J. Org. Chem. 1998, 63, 2422.
3. Gillard, J. W. et al. Tetrahedron Lett. 1991, 32, 1145. SID3205.0 Review of synthetic utility.1
Reagent for protection of 1,2 and 1,3 diols.2
Used as the source for di-tert-butylsilylene, in particular for the thermal silylene precursor, 1-silabicyclo[4.2.0]heptane.3 The silabicycloheptane di-tert-butylsilylene precursor has been utilized in a number of synthetic applications.4,5,6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 201-207.
2. Trost, B. et al. Tetrahedron Lett. 1981, 22, 4999.
3. Driver, T. G.; Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 6524.
4. Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2004, 126, 9993.
5. Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 10659.
6. Howard, B. E.; Woerpel, K. A. Org. Lett. 2007, 9, 4651. SID3207.0 Introduces Si into heteroaromatics.1 1. Ishiyama, T. et al. J. Chem. Soc., Chem. Commun. 2005, 5065 SID3226.0 Highly selective and very robust silicon-based protecting group capable of protecting alcohols, phenols, amines, carboxylic acids, and carbamates.1 1. Liang, H.; Hu. L.; Corey, E. J. Org. Lett. 2011, 13, 4120. SID3342.0 Thermal1 and ECR2 source for CVD of silicon carbide 1. Grow, J. Proc. Electrochem. Soc. 1996, 96, 60.
2. Friessnegg, T. et al. J. Appl. Phys. 1996, 80, 2216. SID3345.0 Review of synthetic utility.1
Reagent for protection of diols.2
Used to doubly block sialic acid for use in efficient silylation reactions.3
Can protect diols and be regioselectively mono-deprotected.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 209-222.
2. Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871.
3. Hanshima, S. Eur. J. Org. Chem. 2009, 4215.
4. Yu, M.; Pagenkopf, B. L. J. Org. Chem. 2002, 67, 4553. SID3351.5 Used in Suzuki cross-coupling reactions.1 1. Ionkin, A. S. et al. Organometallics 2005, 24, 619. SID3366.0 Lithiated compound, Me3SiCHClLi, reacts with methylenephosphines to yield phosphiranes.1
Converts aldehydes to 1,2-dichloroalkenes.2 1. Becker, P. et al. Chem. Ber. 1992, 125, 771.
2. Hosomi, A. et al. Tetrahedron Lett. 1983, 24, 4727. SID3367.0 Intermediate for siloxane block polymers.1 1. Yoshino, K. et al. Chem. Lett. 1990, 2133. SID3392.0 In combination with TEOS forms high pore volume xerogels with adsorptive capacity.1 1. Markovitz, M. et al. Langmuir 2001, 17, 7085. SID3395.2 Used to convert aryl bromides to aryldimethylsilanols useful for cross-coupling protocols.1 1. Denmark, S. E.; Kallemeyn, J. M. Org. Lett. 2003, 5, 3483. SID3396.0 Provides silica-supported catalyst for 1,4-addition reactions.1
Used together w/ SIA0591.0 to anchor PdCl2 catalyst to silica for acceleration of the Tsuji-Trost reaction.2 1. Mutukura, K. et al. Chem.-Eur. J. 2009, 15, 10871.
2. Noda, H. et al. Angew. Chem., Int. Ed. Engl.2012, 51, 8017. SID3398.0 Review of synthetic utility.1
Reacts with benzynes and aldehydes to form o-aminobenzyl alcohols.2
Provides a convenient synthesis of enoltrimethylsilyl ethers.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 598-599.
2. Yoshida, H. et al. Org. Lett. 2007, 9, 3367.
3. Yamamoto, Y.; Matui, C. Organometallics 1997, 16, 2204.
F&F: Vol. 3, p 317; Vol. 4, p 544; Vol. 6, p 634; Vol. 18, p 382. SID3412.0 Hydrolysis product catalytically hydrates olefins, forming alcohols.1
Forms corrosion resistant films for magnesium alloys.2 1. Young, F. et al. U.S. Patent 3,816,550, 1974.
2. Kramov, A. et al. Thin Solid Films 2006, 174, 514. SID3415.0 Employed in oxygen plasma assisted deposition of SiO2 for microelectronics.1
Directs the borylation of N-containing heterocycles.2
Allows direct functionalization of C-H bonds. Forms 1,3-diols from alcohols in good yields.3
Reduces esters to aldehydes in excellent yields.4 1. Levy, R. et al. Chem. Mater. 1993, 5, 1710.
2. Robbins, D. W. et al. J. Am. Chem. Soc.. 2010, 132, 4068.
3. Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70; DOI: 10.1038/nature10785
4. Cheng, C.; Burkhart, M. Angew. Chem., Int. Ed. Engl. 2012, 51, 9422. SID3420.0 Forms α,β-unsaturated acids from carbonyls.1 1. Lombardo, L. et al. Synthesis 1978, 131. F&F: Vol. 8, p 171. SID3425.0 Useful in silicon-mediated Sonogashira cross-coupling reactions.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SID3515.0 Employed in the synthesis of a natural product Papulacandin.1 1. Denmark, S. E. et al. Tetrahedron 2010, 66, 4745. SID3520.0 Cleaves ethers; converts alcohols to iodides.1
Reagent for conversion of carbamates to ureas via isocyanates.2 1. Keinan, E. et al. J. Org. Chem. 1987, 52, 4846.
2. Gastaldi, S. et al. J. Org. Chem. 2000, 65, 3239. SID3534.0 Review of synthetic utility.1 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 241-248. SID3535.0 Review of synthetic utility.1
Reduces β-hydroxyketones stereoselectively.2
Used in the tethered reactions of unsaturated alcohols.3
Used in the silicon-based cross-coupling of vinyl ethers with aryl iodides.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 151-156.
2. Anwar, S. et al. Chem. Comm. 1986, 831.
3. Robertson, J. et al. Tetrahedron Lett. 1998, 39, 669.
4. Evans, P. A.; Baum, E. W. J. Am. Chem. Soc. 2004, 126, 11150. SID3537.0 Review of synthetic utility.1
Forms bis(blocked) or tethered alcohols.2,3
Used as tether in ring-closing-metathesis (RCM) reaction.4
The bifunctional nature of the reagent allows for the templating of diverse groups in intermolecular reactions and ring formation.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 222-228.
2. Bradford, C. et al. Tetrahedron Lett. 1995, 36, 4189.
3. Hutchinson, J. et al. Tetrahedron Lett. 1991, 32, 573.
4. Evans, P. A. et al. J. Am. Chem. Soc. 2003, 125, 14702.
5. Evans, P. A. et al. Angew. Chem., Int. Ed. Engl. 2003, 42, 1734. SID3538.0 Cocatalyst for α-olefin polymerization.1 1. Lee, S. et al. U.S. Patent 5,223,466, 1993. SID3540.0 Intermediate for stable disilenes.1 1. West, R. et al. Science 1981, 214, 1343. SID3547.0 Derivatized silica catalyzes Michael reactions.1 1. Mode, J. et al. Synlett 1998, 625. SID3605.0 Selectively silylates equatorial hydroxyl groups in prostaglandin synthesis.1
Stronger silylation reagent than HMDS; silylates amino acids.2
Dialkylaminotrimethylsilanes are used in the synthesis of pentamethinium salts.3
With aryl aldehydes converts ketones to α,β-unsaturated ketones.4 1. Yankee, E. et al. J. Am. Chem. Soc. 1972, 94, 3651.
2. Rühlman, K. Chem. Ber. 1961, 94, 1876.
3. Kořínek, M. et al. Synthesis 2009, 1291.
4. Mojtahedi, M. M. et al. Synthesis, 2011, 3821. SID4070.0 Review of synthetic utility.1
Enantioselectively converts α-hydroxyketones to 1,2-diols.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 156-157.
2. Burk, M. J.; Feaster, J. E. Tetrahedron Lett. 1992, 33, 2099. SID4074.0 Acetylenic derivative forms chiral polymer membrane that resolves amino acids.1 1. Aoki, T. et al. Makromol. Chem., Rapid Commun. 1992, 13, 565. SID4076.0 Reagent for the preparation of cis-diols and corticosteroids.1 1. Kelley, R. J. Chromatogr. 1969, 43, 229. F&F: Vol. 3, p. 113. SID4120.0 Review of synthetic utility.1
Employed in the tethering of two olefins for the cross metathesis-coupling step in the synthesis of Attenol A.2
Aids in the intramolecular Pinacol reaction.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 228-230.
2. Van de Weghe, P. et al. Org. Lett. 2002, 4, 4105.
3. Corey, E. J.; Carney, R. L. J. Am. Chem. Soc. 1971, 93, 7318. F&F: Vol. 3, p 114; Vol. 4, p 183. SID4125.0 Waterproofing agent for space shuttle thermal tiles.1 1. Hill, W. et al. Polym. Mater. Sci. Eng. 1990, 62, 668. SID4220.6 Catalyst for cyanoacrylate polymerization on surface insesnsitive substrates.1
Phase transfer catalyst.2
Forms functional hybrid carbon electrodes.3 1. O'Connor, J. Chemtech 1994, 24(9), 51.
2. Arkles, B. et al. Organometallics 1983, 2, 454.
3. Colilla, M. et al. Comptes Rendus Chimie 2010, 13, 227. SID4221.0 Reduces cure time for cyanoacrylates on cellulosic substrates.1 1. Lui, J. U.S. Patent 4,906,317, 1990. SID4230.0 Generates cubic silicon carbide by plasma CVD.1
Epitaxial growth of cubic silicon carbide carried out by triode plasma CVD.2 1. Hashim, A. et al. Semiconductor Electronics, IEE Int'l. Conf. Proc. 2006, 646.
2. Yasuiet, K. et al. Appl. Surf. Sci. 2000, 159, 556. SID4241.0 Inhibits aggregation of silica nanoparticles.1,2
A viable option to PEGylation in preventing protein adsorption to silica.2 1. Estephan, Z. G. et al. Langmuir, 2010, 26, 16884.
2. Estephan, Z. G. et al. Langmuir, 2011, 27, 6794. SID4245.0 Carries out phosphonylations of aldimines.1,2 1. Das, B, et al. J. Org. Chem. 2009, 74, 4393.
2. Hatano, M. et al. Tetrahedron Lett. 2009, 50, 3171. SID4352.0 Forms χ2 non-linear optical sol-gel materials by corona poling.1,2 1. Toussaere, E. et al. Non-Linear Optics 1992, 2, 37.
2. Lebeau, J. et al. J. Mater. Chem. 1994, 4, 1855. SID4465.0 Forms organic-inorganic vesicles (cerasomers).1 1. Hashizume, M. et al. J. Thin Solid Films 2003, 438, 20. SID4495.0 Review of synthetic utility.1
Precursor for silanediol-based peptidomimetic inhibitors.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 162.
2. Organ, M. G. et al. Org. Lett. 2002, 4, 2683. SID4530.0 Review of synthetic utility.1
Potential for the transfer of a phenyl group in silicon-based, Hiyama cross-coupling.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 276-277.
2. Hatanaka, Y. et al. Tetrahedron, 1994, 50, 8301. SID4552.0 Review of synthetic utility.1
α-Silylates esters, lactones; precursors to silyl enolates.2
C-Silylates carbamates as shown in the enantioselective example w/ a neryl carbamate.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 381-388.
2. Larson, G. L.; Fuentes,L. M. J. Am. Chem. Soc. 1981, 103, 2418.
3. Duvold, T. et al. Biorg. Med. Chem. Lett. 2002, 12, 3569 and references therein. F&F: Vol. 10, p 91; Vol. 12, p 321; Vol. 13, p 74. SID4555.0 Employed in the kinetic resolution of racemic alcohols.1 1. Weickgenannt, A. et al. Angew. Chem., Int. Ed. Engl. 2010, 49, 2223. SID4558.0 Adhesion promoter for gold substrates in microelectronic applications.1
Forms stable bonds to silica and basic alumina suitable for catalyst immobilization.2
Forms luminescent gels on hydrolysis with (EtO)4Si and Eu(NO3)3.3
Used to immobilize an iridium catalyst for the enantioselective hydrogenation of aryl ketones.4
Used in the preparation of solid-phase Pd catalyst for Suzuki-Miyaura cross-coupling.5 1. Helbert, J. U.S. Patent 4,497,890, 1985.
2. Merchle, C. H. et al. Chem. Mater. 2001, 13, 3617.
3. Corriu, R. et al. J. Chem. Soc., Chem. Commun. 2001, 1116.
4. Liu, G. et al. Adv. Synth. Catal. 2008, 350, 1464.
5. Zhang, X. et al. Synthesis, 2011, 2975. SID4558.5 Used in the synthesis of α,β-unsaturated 3-iminophosphines.1 1. Shaffer, A. R.; Schmidt, J. A. R. Chem. Eur. J. 2009, 15, 2662. SID4559.0 Converts amides to aldehydes in combination with Ti(OiPr)4.2
Selective reduction of esters.3
Silylates 1,2-diols in presence of tris(pentafluorophenyl)borane.4
Used in enantioselective reduction of imines.5
Reducing agent.1 2. Bower, S. et al. Angew. Chem., Int. Ed. Engl. 1996, 35, 1515.
3. Onta, T. et al. Tetrahedron Lett. 1999, 40, 6963.
4. Blackwell, J. M. et al. J. Org. Chem. 1999, 64, 4887.
5. Takai, I. et al. Organometallics 1999, 18, 2271.
F&F: Vol. 1, p 348. SID4589.5 Used to make stable gold(I) complexes.1 1. Bardaji, M. Eur. J. Inorg. Chem. 1998, 989. SID4590.0 Undergoes reactions with Grignard reagents.1 1. Chuit, R. Chem. Rev. 1993, 93, 1371. SID4592.0 Precursor for low temperature CVD of silicon carbide MEMS.1,2 1. Stoldt, C. et al. Sens.Actuators, A 2002, 97-8, 410.
2. Stoldt, C. et al. Appl. Phys. Lett. 2001, 347. SID4593.0 Bonds to oxide-free titanium, gold and silicon substrates.1
Forms 0.2-1.7% carbon doped silicon films.2 1. Arkles, B. et al. J. Adhes. Sci. Technol. 2012, 26, 41.
2. Okada, L. et al. Surf. Sci. 1998, 418, 353. SID4594.0 Employed in epitaxial deposition of silicon for solar and photoelectric devices.1 1. Lin, H. et al. Solid State Electron. 1996, 39, 1731. SID4598.5 Forms polymers with liquid crystal behavior.1 1. Lee, M. et al. Polymer 1993, 34, 4882. SID4600.0 Intermediate with t-BuLi for formation of silaspirocycles.1
Intermediate through polydivinylsilazane or carbodiimide to Si-B-C-N ceramics.2 1. Goetze, B. et al. In Organosilicon III; Auner, N.; Weiss, J., Eds.; Wiley: 1997; p 102.
2. Muller, A. et al. Chem. Mater. 2002, 14, 3398. SID4606.0 Forms copolymers with maleic anhydride.1
Forms polyamine macrocycles on reaction with Li dialkylamides, e.g. LiEtNCH2CH2NEtLi.2
Forms "smart" silamine polymers on reaction with 3,6-diazaoctane.3
Potential vinyl nucleophile in cross-coupling reactions.4 1. Butler, G. et al. J. Polym. Sci. 1970, A1-8, 523.
2. Nagasaki, Y. et al. Chem. Lett. 1993, 1825.
3. Nagasaki, Y. et al. Chemtech 1997, 27(3), 23.
4. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SID4607.0 Employed in "dip-pen" nanolithography.1 1. Ivanisevic, A. et al. J. Am. Chem. Soc. 2001, 123, 7887. SID4612.0 For silylation of glass capillary columns.1 1. Jaroniec, M. et al. J. High Resolut. Chromatogr. 1982, 5, 3. SID4613.0 Potential vinyl nucleophile in cross-coupling reactions.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SID4614.0 Intermediate for curare analogs.1
Potential vinyl nucleophile in cross-coupling reactions.2 1. Tacke, R. et al. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1982, 37B, 1461.
2. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SID4618.0 Forms self-assembled monolayers that can be modified to hydroxyls.1 1. Penansky, J. et al. Langmuir 1995, 11, 953. SIE4670.0 Forms UV-curable coating resins by controlled hydrolysis.1
Used to make epoxy-organosilica particles w/ high positive Zeta potential.2 1. Crivello, J.; Mao. Z. Chem. Mater. 1997, 9, 1554.
2. Nakamura, M.; Ishimura, K. Langmuir 2008, 24, 12228. SIE4885.0 Dopant for semiconductors for optoelectonic applications.1 1. Just, O. et al. Mat. Res. Soc. Symp. Proc. 1996, 415, 111.r SIE4901.0 Employed in the cobalt-catalyzed Diels-Alder approach to 1,3-disubstituted and 1,2,3-trisubstituted benzenes.1 1. Hilt, G.; Danz, M. Synthesis 2008, 2257.
F&F: Vol. 16, p 98. SIE4901.6 Review of synthetic utility.1
In combination with LDA converts ketones to α,β-unsaturated esters.2
Promotes the addition of alkylnitriles to imines.3
Reagent for conversion of carboxylic acids to β-hydroxyesters.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 297-299.
2. Larson, G. L. et al. Synth. Commun. 1999, 20, 1095.
3. Poisson, T. et al. J. Org. Chem. 2009, 74, 3516.
4. Wadhwa, K.; Verkade, J. J. Org. Chem. 2009, 74, 4368. F&F: Vol. 7, p 150; Vol. 11, p 234, p 237. SIE4902.0 Reacts with enol silyl ethers to form α,α-bis-trans-β-triethylsilylethenyl ketones.1
Useful in Sonogashira cross-coupling reactions w/ more stable silyl group than the trimethylsilyl group.2 1. Amemiya, R. et al. Tetrahedron Lett. 2006, 47, 1797.
2. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIE4904.0 Review of synthetic utility.1
Reacts w/ aryl aldehydes to form diethynylmethane derivatives.10
Useful in the preparation of unsymmetrical diarylacetylenes.11
Ethynylates aromatic compounds.2
Precursor to trimethylsilylethynyl copper reagent.3
Lithiated derivative (n-BuLi treatment) reacts with halotriazines to produce monomers.4
Employed in ortho ethenylation of phenols.5
Undergoes Diels-Alder reactions with butadienes.6
Converts imines to propargyl amines.7
Forms propargylic amines from aldehydes and amines in aqueous system.8
Regioselectively forms either regioisomeric enyne upon addition to propargyl amines depending on catalyst employed.9 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 569-580.
10. Girard, D. et al. Tetrahedron Lett. 2007, 48, 6022.
11. Mio, M. et al. Org. Lett. 2002, 4, 3199.
2. Austin, W. et al. J. Org. Chem. 1981, 46, 2280.
3. Sakata, H. et al. Tetrahedron Lett. 1987, 28, 5719.
4. Kouveetakis, J. et al. Chem. Mater. 1994, 6, 636.
5. Kobayashi, K.; Yamaguchi, M. Org. Lett. 2001, 3, 241.
6. Paik, S.-J. et al. Org. Lett. 1999, 1, 2045.
7. Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3, 4319.
8. Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.
9. Matsuyama, N. et al. J. Org. Chem. 2009, 74, 3576. SIF4920.0 Desilylation reagent, selectively removes tBDMS groups in presence of  TIPS groups.1 1. Mascarenas, J. et al. J. Org. Chem. 1986, 51, 1269. SIG5840.0 Used to prepare epoxy-containing hybrid organic-inorganic materials.1 1. Innocenzi, P. et al. Chem. Mater. 1999, 11, 1672. SIH5840.15 Halloysite nanotubes compatibilize polyacetal/polypropylene blends as composites.1 1. Pal, P. et al. J. Appl. Polym. Sci. 2013, doi: 10.1002/app.39587. SIH5840.2 Montmorillonite (smectite) clay mineral-layered, with swelling and intercalation properties.1
Substrate for the polymerization of oligonucleotides.2 1. Pinnavaia, T. In Chemically Modified Surfaces in Catalysis; Miller, J., Ed.; American Chemical Society: Washington, DC, 1982; 192, p 241.
2. Prabahar, K. et al. J. Am. Chem Soc. 1994, 116, 10914. SIH5840.4 Treated onto silica to prepare a fluorinated surface for the embedding of a catalyst for Bonded Fluorous Phase Catalysis (BFPC) used in dehydrogenative silylation of alcohols.1
Forms self-assembled monolayer resists that align nanowire arrays.2 1. Biffis, A.; Zecca, M.; Basato, M. Green Chemistry, 2003, 5, 170 and Biffis, A.; Braga, M.; Basato, M. Adv. Synth. Catal. 2004, 346, 451.
2. Takahashi, T. et al. J. Am. Chem. Soc. 2009, 131, 2102. SIH5840.58 Forms conformal hydrophobic films on Al2O3 by ALD.1 1. Herrmann, C. et al. J. Micromech. Microeng. 2005, 15, 1. SIH5841.0 γc of treated surfaces: 12 mN/m.1 1. Brzoska, J. et al. Langmuir 1994, 10, 4367. SIH5841.2 Hydrolysis in combination with polydimethoxysiloxane gives hard hydrophobic coatings.1 1. Oota, T. et al. Jpn. Kokai JP 06,293,782, 1993; Chem. Abstr. 1995, 122: 136317d. SIH5841.5 Forms inorganic hybrids with photoinduceable refractive index reduction.1 1. Park, J.-U. et al. J. Mater. Chem. 2003, 13, 738. SIH5842.2 Aligns liquid crystals.1 1. Jap. Pat. 57177121, 1982 SIH5844.5 Undergoes Pd-catalyzed cross-coupling with activated aromatic iodides.1
Stable silanol for cross-coupling vinylations.2,3,4
Vinyl silanols cross-couple w/ aryl triflates and nonaflates.5
Potassium salts of silanols cross-couple in absence of fluoride.6 1. Denmark, S. et al. Org. Syn. 2005, 81, 42.
2. Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2001, 123, 6439.
3. Denmark, S. E.; Pan, W. J. Organomet. Chem. 2002, 653, 98.
4. Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565.
5. Denmark, S. E.; Sweis, R. F. Org. Lett. 2002, 4, 3771.
6. Denmark, S. E.; Kallemeyn, J. M. J. Am. Chem. Soc. 2006, 128, 15958. SIH5848.0 Useful in silicon-mediated Sonogashira cross-coupling reactions.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIH5905.0 Review of synthetic utility.1
Converts phosphine oxides to phosphines with inversion of configuration.2
Catalyst for cyclotrimerization of acetylenes.3
Deoxygenates amineoxides.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 309-310.
2. Mislow, K. et al. J. Am. Chem. Soc. 1969, 91, 2788, 7012, 7023.
3. Young, J. et al. J. Am. Chem. Soc. 1998, 120, 6834.
4. Homaidan, F. R.; Issidorides, C. H. Heterocycles, 1981, 16, 411. F&F: Vol. 3, p 148. SIH5905.1 In combination with NH3 generates SiN films.1 1. Tanaka, M. et al. J. Electrochem. Soc. 2000, 147, 2284. SIH5915.0 Intermediate for disilabutanes.1 1. Jung, I. et al. Ger. Off. DE 4219375, 1992; Chem. Abstr. 118: 147789. SIH6102.0 Modifies positive resists for O2 plasma resistance.1
Polymerizes to polydimethylsilazane oligomer in presence of Ru/H2.2
Silylation reagent for diols.3 1. Babich, E. et al. Microelectron. Eng. 1990, 11, 503.
2. Blum, Y. et al. U.S. Patent 4,216,383, 1986; U.S. Patent 4,788,309, 1988.
3. Birkofer, L. et al. J. Organomet. Chem. 1980, 187, 21. SIH6103.0 Pyrolytic deposition in ammonia yields silicon nitride.1 1. Arkles, B. J. Electrochem. Soc. 1986, 133, 233. SIH6105.0 Review of synthetic utility.1
Reacts with three equivalents of an organolithium reagent to give derivatized dimethylsilanols.2,3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 310-313.
2. Frye, C. L. et al. J. Org. Chem. 1970, 35, 1308.
3. Sieburth, S. M.; Fensterbank. L. J. Org. Chem. 1993, 58, 6314. SIH6109.0 Review of synthetic utility.1
Source for trimethylsilyl anion.2,3
Replaces aromatic nitriles with TMS groups in presence of [RhCl(cod)]2.4
Precursor for CVD of silicon carbide.5
Brings about the homocoupling of arenesulfonyl chlorides in the presence of Pd2(dba)3.6
Used as a solvent for the direct borylation of fluoroaromatics.7
Reacts with alkynes to form siloles.8
Undergoes the silylation of acid chlorides to give acylsilanes.9 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 278-284.
2. Shippey, M. A. et al. J. Org. Chem. 1977, 42, 2654.
3. F&F: Vol. 10, p 96; Vol.11, p 253.
4. Tobisu, M. et al. J. Am. Chem. Soc. 2006, 128, 4152.
5. Thin Solid Films 1999, 252, 13.
6. Kashiwabara, T.; Tanaka, M. Tetrahedron Lett. 2005, 46, 7125.
7. Teltewskoi, M. et al. Angew. Chem., Int. Ed. Engl. 2010, 49, 3947.
8. Akagawa, K. et al. Synlett 2011, 22, 813.
9. Capperucci, A. et al. J. Org. Chem. 1988, 53, 3612. SIH6110.0 Review of synthetic utility.1
Review on organosilane protecting groups.2
Converts acid chlorides and alcohols to amines in a three-component reaction.3
Reacts with formamide and ketones to form pyrimidines.4
Lithium reagent reacts w/ aryl chlorides or bromides to provide primary anilines.5
Used to convert ketones to α-aminophosphonates.6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 317-319.
2. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
3. Li, H.-H. et al. Eur. J. Org. Chem. 2008, 3623.
4. Tyagarajan, S.; Chakravarty, P. K. Tetrahedron Lett. 2005, 46, 7889.
5. Lee, S.; Jorgensen, M.; Hartwig, J. F. Org. Lett. 2001, 3, 2729.
6. Heo, Y. et al. Tetrahedron Lett. 2012, 53, 3897. F&F: Vol. 1, p 427; Vol. 2, p 159; Vol. 5, p 323; Vol. 6, p 273; Vol. 7, p 167; Vol. 8, p 29; Vol. 9, p 234; Vol. 11, p 38; Vol. 12, p 239; Vol. 13, p 141; Vol. 14, p 300. SIH6115.0 Review of synthetic utility.1
Exhibits high excess electron mobility: 22 cm2/V s.2
Plasma polymerization produces hydrophobic coatings on metals.3
Provides an excellent alternative to Lawesson’s reagent for the conversion of a carbonyl to a thiocarbonyl.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 313-317.
2. Holroyd, R. et al. Nucl. Instrum. Methods Phys. Res., Sect. A 1997, 390, 233.
3. Bonnar, M. et al. Chem. Phys. Vac. Dep. 1997, 3, 201.
4. Curphey, T. J. J. Org. Chem. 2002, 67, 6461. SIH6115.1 Plasma polymerization produces hydrophobic coatings on metal.1 1. Bonnar, M. et al. Chem. Phys. Vac. Dep. 1997, 3, 201. SIH6116.0 Reviews.1,2
Used in the generation of SAMs of alkanethiolates on noble metal surfaces.3
Forms glycosyl sulfides.4
Opens epoxides regioselectively to form β-mercaptoethanols.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 83-84.
2. McGregor, W. et al. Chem. Soc. Rev. 1993, 199.
3. Hu, J.; Fox, M. A. J. Org. Chem. 1999, 64, 4959.
4.  Dere, R. T. et al. J.Org. Chem. 2011, 76, 7539.
5. Degl’Innocenti, A. et al. Tetrahedron Lett. 1993, 34, 873. SIH6145.0 May be ring opened to diol with water and n-hexylamine.1 1. Tachikawa, M. et al. Chem. Mater. 1998, 10, 4154. SIH6166.2 Reacts onto a Au surface to form monolayers of long alkyl chains.1 1. Owens, T. M. et al. J. Am. Chem. Soc. 2002, 124, 6800. SIH6167.5 Employed in sol-gel derived stationary phases for capillary electrochromatography.1 1. Li, W. et al. J. Chromatog., A 2004, 1044, 23. SIH6170.2 Intermediate for water-soluble poly(methacrylates) prepared by living polymerization.1 1. Ishizone, T. et al. Macromolecules 2003, 36, 42. SIH6175.0 Hydrolysis yields analogs of silica-hydroxymethylsilanetriol polymers.1
Cohydrolysates form highly water dispersible nanoparticles.2
Functionalizes magnetic particles utilized in nucleic acid separation.3
Functionalizes nanoparticles for “stealth therapeutic” biomedical applications.4 1. Arkles, B. et al. Silicon 2013, 5, 187; DOI 10.1007/s12633-013-9146-2.
2. Du, H. et al. J. Colloid Interface Sci. 2009, 340, 202.
3. Templer, D. Eur Pat App. EP 1748 072 A1, 2007.
4. Neoh, K. G. et al. Polymer Chemistry 2011, 2, 747. SIH6177.0 Nucleophilic hydroxymethylation reagent.1 1. Katritzky, A. et al. Tetrahedron Lett. 1987, 28, 1847. F&F: Vol. 10, p 434; Vol. 14, p 331. SIH6200.0 UV blocking agent.1 1. Anthony, B. U.S. Patent 4,495,360, 1985. SII6400.0 Alkylates acetylenes, allenes, ester enolates.1,2 1. Hermitage, S. et al. Tetrahedron Lett. 1998, 39, 3567.
2. Schostarez, H. et al. J. Org. Chem. 1996, 61, 8701. SII6450.0 Review of synthetic utility.1
Employed in silyl-methylation of alkynes.2
Converts aldehydes, ketones, α,β-enones to silyl enol ethers.3
Intermediate for allylic silane synthon, 2-(trimethylsilyl)ethyltriphenylphosphonium iodide.4
Useful for the introduction of the trimethylsilylmethyl group.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 323-336.
2. Schmid, R. et al. J. Am. Chem. Soc. 1980, 102, 5122.
3. Cazeau, P. et al. Tetrahedron 1987, 43, 2075, 2089.
4. Fleming, I. et al. Synthesis 1979, 446.
5. Vedejs, E. J. Org. Chem. 1985, 50, 2170. SII6452.0 Couples zeolite monolayers to glass.1 1. Ha, K. et al. Adv. Mater. 2002, 12(15), 1114. SII6452.2 Intermediate for benzofused nitrogen heterocycles.1 1. Mak, X. et al. J. Org. Chem. 2011, 76, 1852. SII6455.0 Component in hybrid organic/inorganic urethanes.1 1. Cuney, S. et al. Better Ceramics Through Chemistry VII (MRS. Symp. Proc.) 1996, 435, 143. SII6460.0 Reagent for synthesis of cyclic-acetone ketals.1
This and other enol silyl ethers add enantioselectively to imines.2 1. Larson, G. et al. J. Org. Chem. 1973, 38, 3935.
2. Fuji, A. et al. J. Am. Chem. Soc. 1999, 121, 5450. SII6463.4 Precursor for low temp. epitaxy of doped crystalline silicon.1,2
Employed in low temperature CVD of amorphous silicon.2 1. Francis, T. et al. US Pat. Appl. 20120003819, 2012.
2. Kanoh, H. et al. Jpn. J. Appl. Phys. 1993, 32, 2613. SIL6464.0 Catalyst for Tischenko reaction.1
Employed in CVD of lanthanum silicate.2
Catalyst for "click" acetylene-azide reactions.3 1. Bebenbach, H. et al. Angew. Chem., Int. Ed. Engl. 1998, 37, 1569.
2. Aspinal, H. C. et al. Chem. Vap. Deposition 2003, 9, 7.
3. Hong, L. et al. Chem. Commun. 2013, 49, 5589. SIL6467.0 Review of synthetic utility.1
Converts aryl halides to anilines.2
Reacts with ketones and esters in the presence of triethylamine to form the (E)-enol silyl ether with high selectivity.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 356-367.
2. Lee, S. et al. Org. Lett. 2001, 3, 2729.
3. Godenschwager, P. F.; Collum, D. B. J. Am. Chem. Soc. 2008, 130, 8726. F&F: Vol. 4, p 296; Vol. 5, p 393; Vol. 7, p 197; Vol. 12, p 280; Vol. 13, p 165, p 188, p 257; Vol. 14, p 194; Vol. 15, p 207; Vol. 16, p 16, p 357; Vol. 17, p 33; Vol. 21, p 251. SIL6467.2 Review of synthetic utility.1
Used in the use of chloroform in the trichloromethylation of a ketone in a scaled-up synthesis of β-secretase inhibitor, spiropiperidine.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 356-367.
2. Henegar, K. E. et al. Org. Process. Res. Dev. 2013, 17, 985. SIL6467.4 Review of synthetic utility.1 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 356-367. SIL6469.2 Potential for use as an electrolyte-electrode material.1 1. Chang, C. C. Materials & Design 2001, 22, 617. SIL6470.0 Forms conductive anisotropic films on reaction with halotriazines.1
Intermediate for synthesis of alkylgalliumacetylides.2 1. Kouvetakis, J. Chem. Mater. 1994, 6, 636.
2. Lee, K. et al. J. Organomet. Chem. 1993, 449, 53. SIM6472.0 Source for disilane, higher silanes.1 1. Arkles, B. Kirk-Othmer Encyclopedia of Chemical Technology; 1997; 22, p38. SIM6474.0 Used to make thiol-organosilica nanoparticles.1 1. Nakamura, M.; Ishimura, K. Langmuir 2008, 24, 5099. SIM6475.0 Used to make thiol-organosilica nanoparticles.1 1. Nakamura, M.; Ishimura, K. Langmuir 2008, 24, 5099. SIM6476.0 For enzyme immobilization.1
Treatment of mesoporous silica yields highly efficient heavy metal scavenger.2
Couples fluorescent biological tags to semiconductor CdS nanoparticles.3
Modified mesoporous silica supports Pd in coupling reactions.4
Used to make thiol-organosilica nanoparticles.5
Forms modified glass and silica surfaces suitable for SILAR fabrication of CdS thin films.6 1. Stjernlöf, P. et al. Tetrahedron Lett. 1990, 31, 5773.
2. Liu, J. et al. Science 1997, 276, 923.
3. Bruchez, M. et al. Science 1998, 281, 2013.
4. Crudden, C. et al. J. Am. Chem. Soc. 2005, 127, 10045.
5. Nakamura, M.; Ishimura, K. Langmuir 2008, 24, 5099.
6. Sun, H. et al. J. Dispersion Sci. Technol. 2005, 26, 719. SIM6479.2 Coupling agent for polyphenylene sulfide resins.1 1. Tsukamoto, Y. et al. Eur. Pat. Appl. EP 376484 A2 19900704, 19901. SIM6480.0 Stabilizes ionic liquid drop micro-reactors.1 1. Zhang, X. et al. J. Nanotechnol. 2012, 3, 33. SIM6481.0 Group transfer polymerization yields polymers suitable for contact lenses.1
Monomer for synthesis of hydroxyethyl functional methacrylates.2
Undergoes anionic polymerization.3 1. Seidner, L. et al. U.S. Patent 5,244,981, 1993.
2. Hirao, A. et al. Macromol. 1986, 19, 1294.
3. Nagasaki, Y. et al. Polym. Prepr. 1997, 38, 514. SIM6481.1 Employed in conservation/consolidation of stone.1 1. Wheeler, G. In Ninth Int'l Cong. On Deterioration and Conservation of Stone; Fassina, Ed.; Elsevier: 2000; Vol. 2, 541. SIM6482.0 Treatment of fumed silica in acrylic casting compositions accelerates polymerization.1 1. Morozova, E. et al. Chem. Abstr. 95,98753g; Plast. Massy 1981, 7. SIM6483.0 Modification of novolac resin affords bilevel resists having attributes of trilevel resists.1 1. Reichmanis, E.; Smolinsky, G. U.S. Patent 4,481,049, 1984. SIM6486.0 Employed in silicone-modified hydroxyl contact lenses.1 1. Van der Laan, D. et al. EP 940693 A2, 1999. SIM6486.14 Forms oxygen-permeable, wettable contact lenses.1 1. Powell, J. U.S. Patent 4,581,184, 1986. SIM6486.5 Component in positive tone 157 nm resist.1 1. Tegou, E. et al. Chem. Mater. 2004, 16, 2567. SIM6486.9 Monomer for hybrid inorganic-organic composites.1 1. Taylor-Smith, R. Polym. Mater. Sci. Eng., Preprints 1997, 77, 503. SIM6487.2 Employed as adhesion promotor for acrylates in microcontact printing.1
Used in facilitating polymer brush growth on silica.2 1. Carter, K. et al. Polym. Preprints 2002, 43(1), 403.
2. Beinhoff, M. et al. Chem. Mater. 2006, 18, 3425. SIM6487.4 Widely used coupling agent for unsaturated polyester-fiberglass composites.1
Copolymerized with styrene in formation of sol-gel composites.2
Employed in dental polymer composites.3 1. Arkles, B. Chemtech 1977, 7, 713.
2. Wei, Y. et al. J. Mater. Res. 1993, 8, 1143.
3. Matinlinna, J. et al. Int. J. Prosthodontics 2004, 17, 157. SIM6487.6 Important monomer in gas permeable contact lens technology.1,2 1. Gaylord, N. U.S. Patent 3,808,178, 1974.
2. Arkles, B. Chemtech 1983, 13, 542. SIM6491.0 Blocked methacrylate which can be deblocked following polymerization.1 1. Jarus, A. et al. Polym. Mater. Sci. Eng. 1999, 81, 509. SIM6492.0 Employed in the homologation of aldehydes and ketones.1,2 1. Magnus, P.; Roy, G. J. Chem. Soc., Chem. Commun. 1979, 822-3.
2. Magnus, P.; Roy, G. Organometallics 1982, 1, 553-9. F&F: Vol. 10, p 246; Vol. 11, p 331. SIM6492.3 Underoes Pd-catalyzed cross-coupling with activated aromatic iodides.1 1. Denmark, S. et al. Org. Lett. 1999, 1, 1495. SIM6492.66 Provides protein antifouling surface.1 1. Cecchet, F. et al. Langmuir 2006, 22, 1173. SIM6492.7 Forms charge neutral coatings on CdSe quantum dots which conujugate DNA.1 1. Parak, W. et al. Chem. Mater. 2002, 14, 2113. SIM6493.0 Reduces electrostatic forces on substrates used for AFM studies.1 1. McNamee, C. et al. Biophys. J. 2007, 93, 324. SIM6493.4 Forms polymeric proton-conducting electrolytes.1 1. Ritchie, J. et al. Chem. Mater. 2006, 18,504. SIM6494.0 Diels-Alder cyclohexenone building block.1
Asymmetrically adds to aldehydes.2
Cycloadds with high ee values to n-butylglyoxylate.3
Reacts with imines to give optically active 6-substituted piperidenones.4 1. Danishefsky, S. Acc. Chem. Res. 1981, 14, 400.
2. Furuno, H. et al. Org. Lett. 2000, 2, 49.
3. Motoyama, Y. et al. Tetrahedron 2001, 57, 853.
4. Mancheño, O. G. et al. J. Am. Chem. Soc. 2004, 126, 456. SIM6496.0 Review of synthetic utility.1
Initiator for group transfer polymerization.2
With SmI2 converts ketones and aldehydes to silyl enol ethers.3
Cross-couples with aryl bromides.4
Undergoes α-arylation to form 2-aryl acetates.5
Reacts with fullerenes to form α-fullerenyl esters.6
Adds to ethyl propiolate in a 2+2 cycloaddition fashion.7 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 376-380.
2. Webster, O. et al. Science 1983, 222, 39.
3. Hydrio, J. et al. Synthesis 1997, 68, 1.
4. Hama, T. et al. J. Am. Chem. Soc. 2003, 125, 11176.
5. Liu, X.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5182.
6. Nakamura, E. et al. Org. Lett. 2008, 10, 4923.
7. Quendo, A.; Rousseau, Tetrahedron Lett. 1988, 29, 6443. SIM6502.0 Immobilizeable fluorescent compound.1 1. Arkles, B. U.S. Patent 4,918,200, 1990. SIM6506.0 F&F: Vol. 12, p 82. SIM6513.0 Carbonyls undergo Sakurai catalyzed allylation, yielding methallyl-Me3SiO- compounds.1 1. Hollis, T. et al. Tetrahedron Lett. 1993, 34, 4309. SIM6515.0 Plasma polymerization yields dry process photoresist.1
Intermediate for poly(methylsilane) precursor to silicon carbide.2
Deposits SiC on Si and Ge at 400 - 500˚C.3
Source for hydrogenated amorphous silicon carbide films.4 1. Dabbagh, G. et al. J. Photopolym. Sci. Tech. 1998, 11, 651.
2. Fhang, Z. et al. J. Am. Ceram. Soc. 1991, 74, 670.
3. Takatsuka, T. et al. Appl. Surf. Sci. 2000, 162, 156.
4. Lee, M. et al. in “Chemical Aspects of Electronic Ceramics Processing” Arkles, B. ed., MRS Proc. 1998, 495, 153. SIM6518.5 Reagent for thioacetylation of carbonyl compounds.1 1. Evans, D. et al. J. Am. Chem. Soc. 1977, 99, 5009. SIM6520.0 Review of synthetic utility.1
In a synergistic fashion with boron trifluoride etherate catalyzes the crossed imino aldehyde pinacol coupling.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 389-393.
2. Shimizu, M. et al. Synlett. 2002, 1538. SIM6520.1 In combination with H2 forms SiC by CVD.1 1. Josiek, A. et al. Chem. Vap. Dep. 1996, 2, 17. SIM6555.2 Forms thermally resistant and insulating coatings.1 1. Patterson, W. NASA Technical paper 1900, August 1981. SIM6570.0 Equivalent of methylacetoacetate dianion.1 1. Chan, T. et al. J. Chem. Soc., Chem. Commun. 1979, 578. SIM6571.5 Employed in synthesis of α,β-unsaturated esters.1 1. Larcheveque, M. et al. J. Chem. Soc., Chem. Commun. 1981, 877. SIM6576.0 Silylation reagent with volatile byproducts.1 1. Donike, M. J. Chromatogr. 1969, 42, 103. SIM6577.0 Sila-hydrocarbon lubricant.1 1. Tamborski, C. et al. Ind. Eng. Chem. 1983, 22, 172. SIN6597.07 Employed in CVD epitaxy of silicon.1,2,3
Forms silicon nanowires by gold nanoparticle catalyzed deposition.4 1. Sturm, J. et al. ECS Transactions, 2008, 16, 799.
2. Chung, K. et al. Appl. Phys. Lett. 2008, 92, 113506.
3. Singh, K. et al. U.S. Patent 7,645,339, 2010.
4. Kampken, B. et al. Beilstein J. Nanotech. 2012, 3, 535. SIN6597.2 Component in ultrahigh temperature composites for jet engines.1 1. Bewlay, B. et al. MRS Bull. 2003, 28(9), 646. SIN6597.24 Chromophoric silane- forms hybrid organic-inorganic materials w/ second-order nonlinear optics.1 1. Cui, Y. et al. Dyes & Pigments, 2004, 62, 43. SIN6597.25 Photosensitive silane for lithography.1 1. del Campo, A. et al. Angew. Chem. 2005, 44, 4707 SIN6597.5 In combination with m-phenylenediamine, a component in thin film composite membranes for dehydration of ethanol.1 1. Zuo, J. et al. J. Mater. Chem., A 2013, 1, 9814. SIN6597.7 Improves hydrolytic stability of dental composites.1 1. Nikei, S. et al. J. Dent. Res. 2002, 81(7), 482. SIN6597.9 Reagent for the preparation of TMS nitrido-metal complexes from metal halides.1
Used in the trifluoromethylation of ketones with HCF3.2 1. Rhiel, M. et al. Angew. Chem. 1994, 106, 599.
2. Lange, S. et al. J. Org. Chem. 2000, 65, 8848. SIO6600.0 Building block for polyimide nanocomposites.1 1. Tamaki, R. et al. Chem. Mater. 2003, 15, 793. SIO6601.0 Precursor for p- and n-doped silicon nanowires.1 1. Molanar, W. et al. J. Nanotechnol. 2012, 3, 564. SIO6610.0 Provides highly stable C18 stationary phases for LC.1 1. Kirkland, J. et al. LC-GC Int'l. 1993, 6, 436. SIO6615.0 Employed in bonded HPLC reverse phases.1 1. Wise, S. et al. In Silanes Surfaces & Interfaces; Leyden, D., Ed.; Gordon & Breach: 1986; p349. SIO6618.0 Employed in SAM resist.1 1. Oh, T. et al. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1999, 337, 7. SIO6619.5 Alcohol-free compound with anti-microbial activity reported.1 1. Zhang, H. et al. J. Hazard. Mater. 2013 dx.doi.org/10.1016/j.hazmat.2013.05.025 SIO6620.0 Dispersion/coupling agent for high density magnetic recording media.1
Application as immobilizable antimicrobial reported.2 1. Vincent, H. In Chemically Modified Oxide Surfaces; D. Leyden, D., Ed.; Gordon & Breach: 1990; p.305.
2. White, W. et al. In Silanes, Surfaces & Interfaces; Leyden, D., Ed.; Gordon & Breach: 1986; p.107. SIO6632.4 Forms SAMs with enhanced hydrolytic stability.1 1. Arkles, B. et al. Chemistry-A European Journal, 2014, DOI 10.1002/chem.201402757 SIO6635.0 Forms self-assembled monolayers on titanium.1
Reacts onto a gold surface to form monolayers of long alkyl chains.2
Forms SAMs on titanium, gold and silicon surfaces.3 1. Fadea, A. et al. J. Am. Chem. Soc. 1989, 121, 12184.
2. Owens, T. M. et al. J. Am. Chem. Soc. 2002, 124, 6800.
3. Arkles, B. et al. J. Adhes. Sci. Technol. 2012, 26, 41. SIO6640.0 Employed in patterning and printing of electroactive molecular films.1,2
Immobilizes physiologically active cell organelles.3
Treated substrates increase electron transport of pentacene films.4 1. Huan, Z. et al. Synth. Met. 1997, 85, 1375.
2. Jeon, J. et al. Langmuir 1997, 13, 3382.
3. Arkles, B. et al. J. Biol. Chem. 1976, 250, 8856.
4. Skankar, K. et al. J. Mater. Res. 2004, 19, 2003. SIO6645.0 Forms clear, ordered films with tetramethoxysilane.1
Undergoes oscillatory adsorption to form SAMs.2 1. Shimjima, A. et al. J. Am. Chem. Soc. 1998, 120, 4528.
2. Thomsen, L. et al. Surf. & Interface Analysis 2005, 37, 472. SIO6660.0 Forms periodic mesoporous particles by sol-gel.1 1. Mohanty, P. et al. Nanoscale Res. Lett. 2009, 4, 169. SIO6696.5 Forms derivatives suitable for composite dental materials.1 1. Sellinger, A. et al. Chem. Mater. 1996, 8, 1592. SIO6698.0 Forms α-Si3N4 by ammonia thermal synthesis.1 1. Schaible, S. et al. Applied Organomet. Chem. 1993, 7, 53. SIO6705.1 Phenylsiloxanes can be employed as anti-stiction coatings for MEMS.1 1. Martin, J. In Nanotribology; S. Hsu, Kluwer Academic, 2001. SIO6705.6 Intermediate for high-temperature isocyanate resins.1 1. Haddad, T. et al. U.S. Patent 8,891,140, 2015. SIO6706.0 Undergoes hydrosilylation reactions with monomers and polymers.1,2 1. Weidner, R. et al. U.S. Patent 5,047,492, 1997.
2. Kobayashi, T. et al. Chem. Lett. 1998, 763. SIO6708.0 Immobilizes DNA at terminus.1 1. Bensimon, A. et al. Science 1994, 265, 2096. SIO6709.0 Coupling agent for "in situ" polymerization of acrylamide for capillary electrophoresis.1
Employed in stretched DNA fibers for FISH (fluorescent in situ hybridization) mapping.2
Surface treatment for FISH and replication mapping on DNA fibers.3 1. Cifuentes, A. et al. J. Chromatogr., A 1999, 830(2), 423.
2. Labit, H. et al. BioTechniques 2008, 45, 649.
3. Labit, H. et al. Biotechniques Protocol Guide 2010 (48) DOI 10.2144/000113255. SIO6709.6 Forms bonded phases with embedded polarity.1 1. O'Gara, J. E. et al. LCGC 2001, 19, 632. SIO6710.5 Reagent for preparation of HPLC stationary phases with high stability and efficiency.1 1. Kirkland, J. et al. J. Chromatogr. Sci. 1994, 32, 473. SIO6712.5 Fugitive inhibitor of hydrosilylation.1
Forms SAMs on titanium, gold and silicon surfaces.2 1. Lewis, K. et al. U.S. Patent 5,534,609, 1989.
2. Arkles, B. et al. J. Adhes. Sci. Technol. 2012, 26, 41. SIO6713.0 SiO2 surface modification improves pentacene organic electronic performance.1 1. Tiwari, S. H. et al. Organic Electronics, 2012, 13, 18. SIO6715.0 May be formulated to stable water emulsions.1
Suppresses nucleation behavior in ZnO-polylactic acid composites.2 1. Depasquale, R. et al. U.S. Patent 4,648,904, 1987.
2. Bussiere, P. et al. Phys. Chem. Chem. Phys. 2012, 14, 12301. SIP6719.0 Converts functionalized dienes to hydroxymethylcyclopentanes.1 1. Pei, T.; Widenhoefer, R. A. Org. Lett. 2000, 2, 1469. SIP6720.71 Contact angle treated glass surface, water: 115°.1 1. Kondo, Y. J. Oleoscience 2004, 53, 143. SIP6722.6 In combination with TEOS forms hybrid silicalite-1 molecular sieves.1 1. Yeong, Y. et al. Adv. Mater. Res. 2008, 47-50, 238. SIP6723.0 End-capper for low-temperature lubricating fluids.1 1. Gardos, M. ASLE Transactions 1972, 18, 31. SIP6723.4 Polycondensation reaction with silanol functional PDMS oligomers forms low pourpoint fluids.1 1. Andranov, K. et al. Bull. Acad. Sci. USSR 1962, 11, 1492. SIP6724.9 Forms HPLC bonded phases for separation of aromatics.1 1. Den, T. et al. in “Silanes, Surfaces, Interfaces” D. Leyden ed., 1986, 403. SIP6724.95 Catalyzes the enantioselective Friedel-Crafts alkylation of benzoylhydrazones.1
Promotes a tandem asymmetric Aza-Darzens-ring-opening reaction to α-amino-β-chloro esters and α-amino-β-aryl esters.2 1. Shirakawa, S. et al. J. Am. Chem. Soc. 2005, 127, 2858
2. Valdez, S. C.; Leighton, J. L. J. Am. Chem. Soc. 2009, 131, 14638. SIP6724.98 Intermediate for dendron synthesis.1 1. Cuadrado et al. J. Am. Chem. Soc. 1997, 119, 7613. SIP6725.0 Carries out thionation and selenation of amides and lactams with elemental sulfur or selenium, respectively.1 1. Shibahara, F. et al. Org. Lett. 2009, 11, 3064. SIP6728.0 Forms cuprate.1 1. Fleming, I.; Terrett, N. K. Tetrahedron Lett. 1984, 25, 5103. F&F: Vol. 7, p 133; Vol. 8, p 196; Vol. 11, p 209; Vol. 12, p 210. SIP6729.0 Review of synthetic utility.1
Used to prepare α-phenyldimethylsilyl esters with high enantioselectivity.2
Yields optically active reduction products with chiral Rh or Pd catalysts.3
Undergoes 1,4-addition to pyridines forming N-silylated dihydropyridines.4
Hydrosilylation of 1,4-bis(trimethylsilyl)butadiyne can go to the trisilyl allene or the trisilyl enyne.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 254-255.
2. Zhang, Y.-Z. et al. Angew. Chem., Int. Ed. Engl. 2008, 47, 8496.
3. F&F: Vol. 12, p 209; Vol. 13, p 123; Vol. 15, p 168.
4. Gutsulyak, D. V. et al. Angew. Chem., Int. Ed. Engl. 2011, 50, 1384.
5. Kusumoto, T. et al. Bull. Chem. Soc. Jpn. 1992, 65, 1280. SIP6736.0 Reacts with tetraphenylcyclopentadienone to form pentaphenylphenyltrimethylsilane.1
Cross couples with aryl halides and triflates as well as homocouples to 1,2-diynes.2
Undergoes alkynyl cross metathesis reactions.3
Provides the ethynyl silver acetylide.4
Reacts w/ propargyl chlorides to form 1,2-diene-4-ynes.5
Ethynylsilanes react w/ propargyl halides to form 1,4-diynes.6 1. Jianhua, C. et al. In Silicon Chemistry; Corey, J., et al. Ed.; Wiley: 1988: p. 105.
2. Nashihara, Y. et al. J. Org. Chem. 2000, 65, 1780.
3. Furstner, A.; Mathes, C. Org. Lett. 2001, 3, 221.
4. Vitérisi, A. et al. Tetrahedron Lett. 2006, 47, 2779.
5. Montel, F. et al. Org. Lett. 2006, 8, 1905.
6. Kuninobu, Y.; Ishii, E.; Takai, K. Angew. Chem., Int. Ed. Engl. 2007, 46, 3296. SIP6738.0 F&F: Vol. 10, p 91; Vol. 11, p 247; Vol. 12, p 231. SIP6742.0 Used in the preparation of vicinal diamines.1 1. Rangareddy, K. et al. J. Org. Chem. 2004, 69, 6843. SIP6745.0 Synthetic equivalent of formyl carbanion.1 1. White, J. et al. Tetrahedron Lett. 1983, 24, 4539. SIP6747.0 Review of synthetic utility.1
Catalytic radical initiator for alkylselenation and other radical reactions.2
Asymmetrically opens epoxides.3
Regio- and stereoselectively adds to acetylenes under palladium catalysis.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 421-422.
2. Pandey, G. et al. J. Org. Chem. 2000, 65, 4309.
3. Tiecco, M. et al. Tetrahedron 2008, 64, 3337.
4. Detty, M. R. J. Org. Chem. 1979, 44, 4528. F&F: Vol. 9, p 373. SIP6750.0 Reducing reagent in radical reductions.1
Yields ISiH3 on treatments with HI in presence of AlI3.2
Adds to norbornene with high ee.3 1. Barton, D. et al. Synlett 1991, 435.
2. Tamizhmani, G. et al. Chem. Mater. 1990, 2, 473.
3. Gountchev, T. I.; Tilley, T. D. Organometallics 1999, 18, 5661. SIP6770.0 Review of synthetic utility.1
Converts adehydes to phenylsulfides.2
Converts aromatic aldehydes to coupled diols with Yb metal.3
Reacts w/ aryl fluorides to provide phenylaryl thioethers.4
Converts enol silyl ethers into vinylsulfides.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 414-418.
2. Glass, R. Synth. Commun. 1976, 6, 47.
3. Fujiwara, Y. et al. Tetrahedron Lett. 1996, 37. 3465.
4. Liu, C. et al. Synlett 2011, 22, 1143.
5. Degl’innocenti, A. et al. Synlett.1992, 499. F&F: Vol. 10, p 426; Vol. 12, p 535; Vol. 16, p 278. SIP6810.0 Immobilizes pentacene films.1 1. Shankar, K. et al. J. Mater. Res. 2004, 19, 2003. SIP6821.0 Effective treatment for organic-grafted clays.1
Phenylates allyl benzoates.2
Extensive review on the use in silicon-based cross-coupling reactions.3 1. Canrado, K. et al. Chem. Mater. 2001, 13, 3766.
2. Correia, R.; DeShong, P. J. Org Chem. 2001, 66, 7159.
3. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIP6821.5 Catalyzes the reaction of trimethylsilylmethyl imidates with dipolarophiles.1 1. Washizuka, K. et al. Tetrahedron 1999, 55, 12969. SIP6822.0 Cross couples with aryl halides.1
Extensive review on the use in silicon-based cross-coupling reactions.10
Phenylates heteroaromatic carboxamides.2
Directly couples with 1o alkyl bromides and iodides.3
Converts carboxylic acids to phenyl esters and vinyl carboxylates.4
Converts arylselenyl bromides to arylphenylselenides.5
Reacts with anhydrides to transfer both phenyl and methoxy and thus form the mixed diester.6
Used in the nickel-catalyzed direct phenylation of C-H bonds in heteroaromatic system such as benzoxazoles.7
Immobilization reagent for aligned metallic single wall nanotubes (SWNT).8,9 1. Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64, 1684.
10. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011.
2. Lam, P. Y. S. et al. Tetrahedron Lett. 2001. 42, 2427.
3. Young, J.-Y.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616.
4. Luo, F. et al. Synthesis 2010, 2005.
5. Bhadra, S. et al. J. Org. Chem. 2010, 75, 4864.
6. Luo, F. et al. J. Org. Chem. 2010, 75, 5379.
7. Hachilya, H. et al. Angew. Chem., Int. Ed. Engl. 2010, 49, 2202.
8. LeMieux, M. Science 2008, 321, 101.
9. Nish, A. et al. Nature Nanotechnol. 2007, 2, 640. SIP6823.0 Used to silylate and determine acid number of hydroxyl groups in aluminosilicate.1 1. Song, W. et al. J. Am. Chem. Soc. 2003, 125, 13964. SIP6824.0 Undergoes cross-aldol condensation with ketones.1 1. Organic Synthesis; Wiley & Sons: New York; 1993; Collect. Vol. 8, 323. SIP6828.0 Forms stacked phthalocyanines.1 1. Anderson, A. et al. J. Am. Chem. Soc. 1985, 107, 192. SIP6828.82 Selective, recyclable hydrosilylation catalyst.1 1. Larson, G. et al. US Pat. 8,563,459, 2013. SIP6828.83 Selective, recyclable hydrosilylation catalyst.1 1. Larson, G. et al. US Pat. 8,563,459, 2013. SIP6828.85 Selective, recyclable hydrosilylation catalyst.1 1. Larson, G. et al. US Pat. 8,563,459, 2013. SIP6828.86 Selective, recyclable hydrosilylation catalyst.1 1. Larson, G. et al. US Pat. 8,563,459, 2013. SIP6890.0 Review of synthetic utility.1
Sterically hindered base.2
Anionic initiator for preparation of polyalkylene oxides.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 432-453.
2. Es-Sayed, M. et al. Synlett 1992, 12, 962.
3. Yokoyama, M. Bioconjugate Chem. 1992, 3, 275. F&F: Vol. 4, p 407; Vol. 10, p 38, p 326; Vol. 13, p 257; Vol. 16, p 282. SIP6890.1 Sterically hindered base.1
Employed in the fluoroform trifluoromethylation of silanes, boranes, sulfur and non-enolizable ketones.2 1. Es-Sayed, M. et al. Synlett 1992, 12, 962.
2. Prakash, G. K. S. et al. Science, 2012, 338, 1324. F&F: Vol. 4, p 407; Vol. 10, p 38, p 326; Vol. 13, p 257; Vol. 16, p 282. SIP6898.0 Aqueous water repellent concentrate for impregnation of mineral-based construction materials.1 1. Sinica, M. et al. Materials Science (Medziagotyra) 2007, 13, 229. SIP6899.0 Used as a nucleophiles in the enantioselective formation of allyl alcohols from allyl carbonates.1
Employed in an inexpensive vinylation of aryl bromides.2
Catalyst for the cross-coupling of aryl and vinylsilanes.3 1. Lyothier, I. et al. Angew. Chem., Int. Ed. Engl. 2006, 45, 6204.
2. Denmark, S. E.; Butler, C.R. J. Am. Chem. Soc. 2008, 130, 3690.
3. Jeffery, T. Tetrahedron Lett. 1999, 40, 1673. SIP6901.0 Cleaves esters under non-aqueous conditions.1
Catalyzes fluoride-free, silicon-based cross-coupling reactions.2
Converts difluorobenzenes to fluorophenols.3
Catalyst for the cross-coupling of aryl and vinylsilanes.4 1. Laganis, E. et al. Tetrahedron Lett. 1984, 25, 5831.
2. Denmark, S. E.; Regens, C. S. Accts. Chem. Res. 2008, 41, 1486.
3. Li, J. et al. Synlett 2009, 633.
4. Jeffery, T. Tetrahedron Lett. 1999, 40, 1673. F&F: Vol. 12, p 414. SIP6901.2 Reviewed.1
Used in the vinylation of aromatic bromides.2
Employed in a silicon-based cross-coupling step in a synthesis of papulacandin D.3
Converts methyl esters to potassium salts of carboxylic acids.4
Promoter for the silicon-based cross-coupling of vinylsiloxanes with aryl iodides.2,5 1. Bennett, C. E. in e-EROS Encyclopedia of Reagents for Organic Synthesis, 2007.
2. Denmark, S. E.; Butler, C. R. Org. Synth. 2009, 86, 274.
3. Denmark, S. E.; Regens, C. S.; Kobayashi, T. J. Am. Chem. Soc. 2007, 129, 2774.
4. Minta, E. et al. Tetrahedron Lett. 2005, 46, 1795.
5. Denmark, S. E.; Butler, C. R. J. Am. Chem. Soc. 2008, 130, 3690. SIP6902.1 Precursor for 15-21 k dielectric films.1 1. Kukli, K. et al. Chem Mater. 2004, 16, 5162. SIP6902.2 Undergoes color change (whitens) when pulsed with Nd:YAG laser (532 nm, 240 mJ).1 1. Gugger, H. et al. Eur. Pat. Appl. EP 1987-810049, 1987. SIP6902.6 Surface derivatization reagent enabling “click” chemistry of nanoparticles.1 1. Achatz, D. et al. Sensors and Actuators B 2010, 150, 211. SIP6903.0 Reagent for the preparation of 1,4-dienes1, 4-en-1-ynes.2
Sonogashira cross-coupling would yield silyl-protected propargyl alcohol derivatives.3 1. Knochel, P. et al. J. Organomet. Chem. 1986, 309, 1.
2. Mesnard, D. et al. J. Organomet. Chem. 1991, 420, 163.
3. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIP6905.0 For introduction of the 2-propenyl group via cross-coupling.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIP6917.0 Surface modifier for TiO2 particles that improves dispersibility but does not reduce photocatalytic activity.1 1. Ukaji, E. et al. Appl. Surf. Sci. 2007, 254, 563. SIP6923.0 Allylates ketones and aldehydes in the absence of palladium catalysis. Source for other 2- pyridyl allylsilanes.1
Extensive review on the use in silicon-based cross-coupling reactions.2 1. Kamei, T. et al. Org. Lett. 2005, 7, 4725.
2. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIP6928.0 Forms self-assembled layers which can be “nano-shaved” by scanning AFM.1 1. Rosa, L. et al. Mater. Lett.2009, 63, 961. SIP6934.0 Extensive review on the use in silicon-based cross-coupling reactions.1 1. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIP6942.0 Useful as a hydroxymethyl synthon.1
Extensive review on the use in silicon-based cross-coupling reactions.2 1. Itami, K. et al. J. Org. Chem. 2001, 66, 3970.
2. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIS6944.0 Employed in immobilization of oligonucleotides.1 1. Podyminogin, M. et al. Nucleic Acids Res. 2001, 29, 5090. SIS6952.0 Reduces blood protein adsorption.1
Anti-stiction coating for polysilicon.2 1. Arkles, B. et al. In Silanes Surfaces & Interfaces; Leyden, D., Ed; Gordon & Breach: 1986; p 91.
2. Almanza-Workman, A. et al. J. Electrochem. Soc. 2002, 149, H6 SIS6977.0 Extensive review on the use in silicon-based cross-coupling reactions.1 1. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIS6980.0 Review of synthetic utility.1
Reacts with allyl chloride in toluene to form cyclopropene.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 468-478.
2. Binger, P. et al. Org. Synth. 1999, 77, 254. F&F: Vol. 1, p 1046; Vol. 3, p 261; Vol. 6, p 442; Vol. 7, p 329; Vol. 12, p 441, p 446; Vol. 16, p 307; Vol. 21, p 401. SIS6980.1 Review of synthetic utility.1 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 468-478. SIS6980.2 Review of synthetic utility.1 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 468-478. SIS6985.0 Pillared, interlayered clay - may be exfoliated for composite and catalyst applications.1 1. Gil, A. et al. Catal. Rev. 2000, 42, 145. SIS6987.0 Sodium silanolate generated "in-situ".1 1. Denmark, S. E.; Baird, J. D. Org. Lett. 2006, 8, 793. SIS6988.0 Used as a weak base for alkylation of phenols.1
Directly generates amines from carboxylic acids in a modified Curtius reaction.2
Important promoter for silicon-based cross-coupling reactions.3 1. Houpis, N. et al. Org. Lett. 2005, 7, 1947.
2. Ma, B.; Lee, C-W. Tetrahedron Lett. 2010, 51, 385.
3. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIT7010.0 Forms linear and branched carbosiloxane dendrimers by hydrosilylation/alcoholysis cycles.1 1. Bruning, K. et al. Synthesis 1999, 1931. SIT7020.0 Starting point for dendrimer synthesis.1,2 1. Van der Made, A. et al. Adv. Mater. 1993, 5, 466.
2. Alonso, B. et al. J. Chem. Soc., Chem. Commun. 1994, 2575. SIT7062.0 Used in preparation of mesoporous silica spheres by surfactant templated synthesis.1 1. Huo, Q. et al. Chem. Mater. 1997, 9, 14. SIT7085.0 Enantioselectively opens stilbine epoxides to trichlorosilylated chlorohydrins.1
Promotes the reaction of aldehydes with isocyanides.2 1. Tao, B. et al. J. Am. Chem. Soc. 2001, 123, 353.
2. Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825. SIT7110.0 Source by hydrolysis of SiO2 and sol-gel derived glasses.1
Intermediate for silica spheres with controlled dimensions.2 1. Brinker, C. et al. Sol-Gel Science; Academic Press: 1990.
2. Stöber, W. et al. J. Coll. Interface Sci. 1968, 26, 62. SIT7115.0 Silicon dopant for n-type GaN thin films.1 1. Obuci, Y. et al. J. Cryst. Growth 1997, 170, 325. SIT7120.0 F&F: Vol. 12, p 466. SIT7123.0 May be reduced to silicon metal.1
Reacts with NH3 <500° to form SiN.2 1. Szekely,G. J. Electrochem. Soc. 1957, 104, 663.
2. Kaloyeros, A. et al. Chemical Aspects of Electronic Ceramic Processing MRS Proc 1998, 495. SIT7125.0 Forms hydrogen free films by CVD with trialkylamines.1 1. Uchida, Y. et al. Mater. Res. Soc. Symp. Proc. (Amorphous Thin Films) 2001, 446. SIT7273.0 Review of synthetic utility.1
Review on organosilane protecting groups.2
Reagent for protection of 3',5' hydroxy nucleosides.3,4
Key review in natural products synthesis.5
Protects the four equatorial hydroxyls of inositol in a single step.6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 230-233.
2. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
3. Kanaya, E. N. et al. Biochemistry 1987, 26, 7159.
4. Markiewicz, W. J. Chem. Res. 1979, 24.
5. Ziegler, T. et al. Trends Org. Chem. 1997, 6, 91.
6. Martin-Lomas, M. et al. Eur. J. Org. Chem. 2000, 1539. F&F: Vol. 16, p 125. SIT7276.0 Reacts with chromophores to form NLO active hybrid organic-inorganics.1 1. Kakkar, A. et al. J. Am. Chem. Soc. 1999, 121, 3657. SIT7278.0 Crosslinker for vinyl functional silicones.1 1. Ando. T. et al. Polymer Gels and Networks 1993, 1, 45. SIT7283.5 Forms hierarchically organized hybrid silica monoliths.1 1. Hüsing, N. 13th Sol-Gel Workshop Proc. 2005, 18. SIT7292.0 Nucleus for star gels.1 1. Sharp, K. Adv. Mater. 1998, 10, 1243 SIT7305.0 Partial hydrolysis gives soluble polymer.1
Catalyst for condensation cure silicones.2 1. Bradley, D. et al. Can. J. Chem. 1963, 41, 629.
2. Buehler, F. A. U.S. Patent 3,235,495, 1966. SIT7308.0 Mediates photochemical alkylation of heteroaromatic bases with alkyl halides.1
Precursor for CVD of amorphous hydrogenated silicon - carbon films.2 1. Togo, H. et al. Chem. Lett. 1991, 11, 2063.
2. Wrobel, A. et al. Chem. Mater. 1995, 7, 1403. SIT7510.0 Converts aryl fluorides to anisole derivatives.1 1. Buckley, H. L. et al. Organometallics 2009, 28, 2356. SIT7530.0 Cyclic monomer- undergoes hydrosilylation reactions.1
Forms hybrid inorganic-organic polymers with dienes suitable for circuit board resins.2
Forms gate dielectrics by CVD.3 1. Michalczyk, M. et al. Chem. Mater. 1993, 5, 1687.
2. Leibfried, R. U.S. Patent 4,900,799, 1990.
3. Wang, A. et al. Res. Soc. Symp. Proc. 1997, 424, 281. SIT7537.0 Precursor for "star" gel hybrid inorganic-organic polymers.1
Forms a-SiC:H by remote plasma CVD.2 1. Michalczyk, M. et al. PCT Int'l Appl. 9406807, 1994.
2. Wrobel, A. M. et al. Thin Solid Films 2012, 520, 7100. SIT7540.0 Undergoes ring-opening polymerization with tetramethylammonium siloxanoate.1 1. Suryananarayanam, B. et al. J. Polym. Sci. 1974, 12, 1089. SIT7541.0 Forms SiC nanowires by APCVD.1 1. Rho, D. Mater. Res. Soc. Symp. Proc. 2005, 832, 317. SIT7542.0 Review of synthetic utility.1
Converts unsaturated alcohols to diols.2
Converts homopropargylic alcohols to β-hydroxy ketones in a three-step process.3
Employed in the silylation/hydrosilylation of allylic alcohols leading to useful cyclic alkoxysilane intermediates.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 488-490.
2. Tamao, K. et al. J. Am. Chem. Soc. 1988, 110, 3712.
3. Marshall, J. A.; Yanik, M.W. Org. Lett. 2000, 2, 2173.
4. Tamao, K. et al. J. Am. Chem. Soc. 1986, 108, 6090. SIT7546.0 Employed in reductive halogenation of aldehydes and epoxides.1
Used to link ferrocenylsilane, polyolefin block copolymers into stable cylindrical forms.2
Employed in the high-yield reduction of amides to amines in the presence of other reducible groups.3
Reduces anisoles to arenes.4
Hydrosilylates terminal alkynes to form alkenylsilanes capable of cross-coupling w/ aryl and vinyl halides.5
Employed in the reduction of an acetopheone derivative to the methylene in the synthesis of ziprasidone.6 1. Azipura et al. Tetrahedron Lett. 1984, 25, 3123.
2. Wang, X.-S. et al. J. Am. Chem. Soc. 2003, 125, 12686.
3. Hanada, S. et al. J. Am. Chem. Soc. 2009, 131, 15032.
4. Alvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132, 17352.
5. Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073.
6. Nadkami, D.; Hallissey, J. F. Org. Proc. Res. Dev. 2008, 12, 1142. SIT7555.0 Intermediate for α-SiC:H thin films by PECVD.1 1. Kim, D. et al. Thin Solid Films 1996, 283, 109. SIT7555.1 Employed in deposition of SI:C:O:H dielectric films.1 1. Laxman, R. et al. Semiconductor International 2000, 23, 95. SIT7580.0 Candidate material for nanowires.1 1. Arkles, B. et al. U.S. Patent 8,575,381, 2012. SIT7753.0 Deactivates glass capillary columns by persilylation.1 1. Grob, K. et al. High Resol. Chrom. & Col Chrom. 1980, 3, 197. SIT7755.0 Highly efficient UV-violet light emitting polymers formed by Pd-catalyzed copolymerization with fluorene compounds.1 1. Zhou, X. et al. Macromol. 2007, 40, 3015. SIT7777.0 In combination with CTAB intermediate for mesoporous silica fibers.1 1. Kleits, F. et al. Chrom. Mater. 2001, 13, 3587. SIT7880.0 Employed in low temperature CVD of amorphous silicon.1 1. Kanoh, H. et al. Jpn. J. Appl. Phys. 1993, 32, 2613. SIT7900.0 Review of synthetic utility.1
Modifier for Pt-catalyst in 2-component RTVs.2
Core molecule for dendrimers.3
Excellent and inexpensive reagent for vinylations in cross-coupling reactions for the formation of styrenes and dienes.4,5,6
Extensive review on the use in silicon-based cross-coupling reactions.7 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 484-487.
2. Kim, C. et al. Bull. Kor. Chem. Soc. 1997, 18, 164.
3. Broadbridge, R. et al. J. Chem. Soc., Chem. Commun. 1998, 1449.
4. Denmark, S. E.; Butler, C. R. Org. Lett. 2006, 8, 63.
5. Denmark, S. E.; Wang, Z. J. Organomet. Chem. 2001, 624, 372.
6. Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565.
7. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIT7906.0 Review of synthetic utility.1
The N-silylated β-lactam shows increased hydrolytic stability over that of the analogous N-TBS derivative.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 263-265.
2. Wetter, H.; Oertle, K. Tetrahedron Lett. 1985, 26, 5515. F&F: Vol. 13, p 74. SIT7906.2 Reagent for introduction of thexyldimethylsilyl protecting group.1 1. Simchen, G. Advances in Silicon Chemistry 1991, 1, 189. SIT7908.0 Complexing agent for Ag, Au, Pd, Pt.1
Potential adhesion promoter for gold.2 1. Schilling, T. et al. Mikrochemica Acta 1996, 124, 235.
2. Ciszek, J. W. et al. J. Am. Chem. Soc. 2004, 126, 13172. SIT7909.7 Derivatized surfaces bind adenine modified polymers.1 1. Viswanathan, K. et al. Polymer Preprints 2005, 4602, 1133. SIT8005.0 Low and high resistivity phases present.1 1. Clevenger, L. A. et al. J. Appl. Phys. 1992, 72, 4978. SIT8042.0 Charge control surface treatment for electrostatic copier particles.1
Converts arylselenyl bromides to aryl-4-tolylselenides.2 1. Yamazaki, H. Jpn. Kokai JP 06027719 A2, 1994.
2. Bhadra, S. et al. J. Org. Chem. 2010, 75, 4864. SIT8085.0 Esters with amino acids are versatile building blocks for peptide synthesis.1,2 1. Sharma, R. et al. Pept.: Biol Chem. Proc. Chin. Pept. Symp., 3rd Ed, 1995; p31; Chem. Abstr. 126:31636m.
2. Broadbridge, R. et al. J. Chem. Soc., Chem. Commun. 1998, 1449. SIT8088.0 Starting point for a wide range of MO2.SiO2 materials by sol-gel.1,2
Used to prepare single-site iron(III) centers on SBA-15 silica.3
Used in the preparation of tris(t-butoxy)siloxy derivatives of boron, precursors to B/Si materials.4 1. Terry, K.; Tilley, T. D. Chem. Mater. 1991, 3, 1001.
2. Terry, K. et al. Chem. Mater. 1992, 4, 1290.
3. Nozaki, C. et al. J. Am. Chem. Soc. 2002, 124, 13194.
4. Fujdala, K. L. et al. Inorg. Chem. 2003, 42, 1140. SIT8092.0 Forms radical cation on radiolysis.1
Supersilyl starting material; forms a variety of sterically overloaded compounds.2 1. Rhodes, C. J. Organomet. Chem. 1993, 443, 19.
2. Wiberg, N. in Frontiers of Organosilicon Chem.; Bassindale, A., Ed.; Royal Society Chemistry: 1991; p. 263. SIT8153.0 Source for dichlorocarbene.1 1. Cunico, R. et al. J. Organomet. Chem. 1978, 154, C45. SIT8155.0 Generates chlorosilylene chemistry.1
Carries out thionation and selenation of amides and lactams with elemental sulfur or selenium, respectively.2 1. Jung, I. N. et al. Organometallics 2003, 22, 2551.
2. Shibahara, F. et al. Org. Lett. 2009, 11, 3064. F&F: Vol. 3, p 298; Vol. 4, p 525; Vol. 5, p 688; Vol. 7, p 606; Vol. 11, p 553; Vol. 13, p 322; Vol. 14, p 82; Vol. 18, p 373. SIT8158.0 Employed in polypyridine self-assembled monolayers.1 1. Paulson, S. et al. J. Chem. Soc., Chem. Commun. 1992, 21, 1615. SIT8170.0 Employed in column chromatography where low protein retentivity is required.1
Employed in solid phase extraction of fluorous phases.2
Modification of layered silicates yields film-forming compositions.3 1. Xindu, G. et al. J. Chromatogr. 1983, 269, 96.
2. Curran, D. J. Org. Chem. 1997, 62, 6714.
3. Ogawa, M. et al. Chem. Mater. 1998, 10, 3787. SIT8174.0 Lowers the coefficient of friction of silicon substrates.1 1. DePalma, V. et al. Langmuir 1989, 5, 868. SIT8180.0 Employed in CVD of silicon dioxide films with low dielectric constants.1,2,3 1. Homma, T. et al. J. Electrochem. Soc. 1993, 140, 687.
2. Hayashi, T. et al. J. Ceram. Soc. Japan 1997, 105, 428.
3. Gorman, B. P. et al. Appl. Phys. Lett. 2001, 79, 4010. SIT8185.0 Review of synthetic utility.1
Reducing agent.2
Used to convert alkynes to (E)-alkenes via hydrosilylation-desilylation.3
Reduces amides to amines in the presence of Zn(OAc)2.4
Used in the reduction of phosphine oxides to phosphines.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 501-505.
2. Boyer, J. et al. Synthesis 1981, 558.
3. Trost, B. M. et al. J. Am. Chem. Soc. 2002, 124, 7922.
4. Dos, S. et al. J. Am. Chem. Soc. 2010, 132, 1770.
5. Coumbe, T. et al. Tetrahedron Lett. 1994, 35, 625. SIT8185.3 Coupling agent for chitosan to titanium.1 1. Martin, H. et al. Appl. Surf. Sci. 2008, 254, 4599. SIT8185.9 Extensive review on the use in silicon-based cross-coupling reactions.1 1. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIT8186.3 Surface treatments stabilize particle dispersions.1 1. Arkles, B. et al. in Silanes and Other Coupling Agents; Mittal, K., Ed.; VSP (Brill), 2009, Vol. 5, p. 51. SIT8186.45 Employed in nitroxyl mediated grafting of vinylsilanes to polyolefins.1 1. Weaver, J. et al. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4542. SIT8186.7 Reacts with fullerenes by 1,3-dipolar addition of azomethine ylide to yield pyrollidine adduct.1 1. Bianco, A. et al. J. Am. Chem. Soc. 1997, 119, 7550. SIT8187.0 Fluorescence probe for crosslinking in silicones.1
Employed in a chemically modified logic gate.2 1. Leezenberg, P. et al. Chem. Mater. 1995, 7, 1784.
2. Mu, L. et al. Angew. Chem., Int. Ed. Engl. 2009, 48, 3469. SIT8187.5 Utilized in HPLC of metal chelates.1
Forms proton vacancy conducting polymers with sulfonamides by sol-gel.2
Ligand for molecular imprinting of silica with chymotrypsin transition state analog.3 1. Suzuki, T. et al. Chem. Lett. 1994, 881.
2. De Zea Bermudez, V. et al. Sol-Gel Optics II, SPIE Proc. 1992, 1728, 180.
3. Markowitz, M. et al. Langmuir 2000, 16, 1759. SIT8189.0 Modifies silica micro-capillaries to enhance flow of aqueous media.1 1. Constable, H. et al. Colloids Surf., A 2011, 380, 128. SIT8189.5 Anchoring reagent for light directed synthesis of DNA on glass.1 1. McGall, G. et al. J. Am. Chem. Soc. 1997, 119, 5081. SIT8189.8 Reagent for immobilization of anti-bodies on silicon nitride sensor chips.1 1. Kurihara, Y, et al. Langmuir 2012, 28, 13609. SIT8191.0 Used to prepare diazotizable supports for enzyme immobilization.1 1. Weetall, H. U.S. Patent 3,652,761, 1972. SIT8192.0 Forms PEGylated glass surfaces suitable for capillary electrophoresis.1 1. Razunguzwa, T. et al. Anal. Chem. 2006, 78, 4326. SIT8194.0 Provides greater stability for coupled proteins than shorter alkyl homologs.1 1. Seitz, O. et al. J. Mater. Chem. 2011, 21, 4384. SIT8250.0 Forms silylated derivatives of alcohols stable to Grignard conditions.1 1. Arkles, B. In Handbook of Grignard Reagents; Silverman, G., Ed; Marcel Dekker: 1996; p667. SIT8330.0 Versatile reducing agent; key reviews.1,2,3,4
Employed in the regioselective reduction of a ketal in the synthesis of Tamiflu.10
Review on organosilane protecting groups.5
Silylates tertiary alcohols in presence of tris(pentafluorophenyl)borane.6
Silylates arenes in presence of Ru catalyst and t-butylethylene.7
Used in reductive cyclization of ynals.8
Readily converted directly to triethylsilyl carboxylates.9 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 506-514.
10. Federspiel, M. et al. Org. Proc. Res. Dev. 1999, 3, 266.
2. Nagai, Y. Org. Prep. Proc. Int. 1980, 12, 13.
3. F&F: Vol. 1, p 1218; Vol. 2, p 433; Vol. 3, p 304; Vol. 4, p 562; Vol. 6, p 652; Vol. 7, p 387; Vol. 8, p 501; Vol. 9, p 418; Vol. 10, p 483; Vol. 11, p 482; Vol. 15, p 338; Vol. 16, p 356; Vol. 17, p 367.
4. Larson, G. L.; Fry, J. L. Ionic and Organometallic-Catalyzed Organosilane Reductions, Volume 71, Denmark, S. E., Ed. John WIley and Sons, 2008
5. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
6. Blackwell, J. M. et al. J. Org. Chem. 1999, 64, 4887.
7. Ezbiansky, K. et al. J. Organometal. Chem. 1998, 17, 1455.
8. Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc.1999, 121, 6098.
9. Chahan, M. et al. Org. Lett. 2000, 2, 1027. SIT8332.0 Employed in phosphorodiamidate synthesis.1 1. Evans, D. et al. J. Am. Chem. Soc. 1978, 100, 3467. SIT8335.0 Review of synthetic utility.1
Triethylsilylation reagent.2
Review on organosilane protecting groups.3
In combination with lutidine selectively converts acetals to aldehydes without affecting silyl ethers.4
Reacts with esters to form both the silyl ketene acetal and the α-triethylsilyl ester.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 517-518.
2. Emde, H. et al. Synthesis 1982, 1.
3. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
4. Fujioka, H. et al. J. Am. Chem. Soc. 2006, 128, 5930.
5. Emde, H. et al. Liebigs Ann. Chem.1981, 1643. SIT8356.0 Trifluoromethylates aryl chlorides under mild conditions.1 1. Cho, E. J. et al. Science, 2010, 328, 1679. SIT8362.0 Key reviews.1,2,3
Silylates cyclopropenes to give cyclopropenyltrimethylsilanes.10
Trifluoromethylates terminal acetylenes.11
Gives trifluoromethylthiolation of terminal alkynes in the presence of sulfur.12
Trifluoromethylates carbonyl compounds.4
Converts esters to trifluoromethyl ketones.5
Used to prepare trifluoromethyl vicinal ethylene diamines.6
Used in a simple preparation of potassium (trifluoromethyl)trifluoroborate.7
Used to prepare trifluoromethyltitanium complexes.8
Trifluoromethylates aldehydes, ketones and imines in good yield.9 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 539-546.
10. Fordyce, E. A. F. et al. J. Chem. Soc., Chem. Commun. 2008, 1124.
11. Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2010, 132, 7262.
12. Chen, C. et al. J. Am. Chem. Soc. 2012, 134, 12454.
2. Prakash, G. et al. Chem. Rev. 1997, 97, 757.
3. Singh, R. P.; Shreeve. J. M. Tetrahedron 2000, 56, 7613.
4. Prakash, G. et al. J. Am. Chem. Soc. 1989, 111, 393.
5. Singh, R. et al. J. Org. Chem. 1999, 64, 2873.
6. Prakash, G. K. S.; Mandal, M. J. Am. Chem. Soc. 2002, 124, 6538.
7. Molander, G. A.; Hoag, B. P. Organometallics 2003, 22, 3313.
8. Taw, F. L. et al. J. Am. Chem. Soc. 2003, 125, 14712.
9. Matsukawa, S.; Saijo, M. Tetrahedron Lett. 2008, 49, 4655. SIT8364.5 Reagent for derivatization of beta-blockers for electron capture detection.1 1. Caban, M. Anal. Chim. Acta 2013, 782, 75. SIT8372.0 Forms catalytic gels for aerobic oxidation of alcohols in combination with tetrapropylammonium perrhenate.1 1. Cirminna, R. et al. Org. Biomol. Chem. 2006, 4, 2637. SIT8378.3 Employed in preparation of nanoscale ionic silicas.1
Forms sulfonated fuel cell electrodes.2 1. Giannelis, E. et al. Appl. Organomet. Chem. 2010, 24, 581.
2. Eastcott, J. et al. J. Power Sources 2012,197,102. SIT8378.5 Forms functionalized silica nanoparticles employed in amperometric glucose sensor.1 1. Zhao, W. et al. Electrochim. Acta 2013, 89, 278. SIT8379.0 Treatment with KH yields pentacoordinate dihydrosilicate.1 1. Corriu, R. et al. Organometallics 1992, 10, 3564. SIT8384.0 Review of synthetic utility.1
Review on organosilane protecting groups.2
Employed in nucleotide synthesis.3
Protection and stereocontrol of reaction of pyrroles.4
Quantitatively converts O-acetyl-protected glycosylthiomethyl phosphonate esters to their phosphonates.5
Used to form stable enol silyl ethers that can be oxidized to enones or β-TIPS-enones.6
Reacts with hydrazine to form the mono-TIPShydrazine, which can be converted to TIPS-protected hydrazones and further to unsymmetrical azines.7 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 554-558.
2. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
3. Ogilvie, K. et al. Tetrahedron Lett. 1974, 2861. Ogilvie, K. et al. Carbohyd., Nucleosides, Nucleotides 1976, 3, 197.
4. Pattenden, G.; Robertson, G. M. Tetrahedron Lett. 1986, 27, 399.
5. Zhu, X. et al. J. Org. Chem. 2004, 69, 6843.
6. Yu, J.-Q. et al. Org. Lett. 2005, 7, 1415.
7. Justo de Pomar, J. C.; Soderquist, J. A. Tetrahedron Lett. 2000, 41, 3285. F&F: Vol. 5, p 75. SIT8385.0 Selectively silylates primary alcohols in presence of secondary alcohols.1 1. Horner, L. et al. J. Organomet. Chem. 1985, 282, 155. SIT8387.0 Review of synthetic utility.1,2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 559-562.
2. Rucker, C. Chem. Rev. 1995, 95, 1009. F&F: Vol. 11, p 567; Vol. 13, p 11; Vol. 21, p 254. SIT8390.0 Sol-gel intermediate.1 1. Corriu, R. et al. Chem. Mater. 1992, 4, 1217. SIT8392.0 F&F: Vol. 19, p 167. SIT8397.0 For surface initiated ATRP polymerization.1,2 1. Mulvihill, M. et al. J. Am. Chem. Soc. 2005, 127, 16040.
2. Huck, J. et al. J. Mater. Chem. 2004, 14, 730. SIT8404.0 Employed for polar modified stationary phases.1 1. Xiang, Z. et al. Chromatographia, 2010, 72, 23. SIT8410.0 For electrode modification, polypyrrole adhesion.1 1. Simon, R. et al. J. Am. Chem. Soc. 1982, 104, 2031. SIT8414.0 Component in hybrid organic-inorganic exchange resins.1 1. Lee, B. et al. Langmuir 2003,19, 4246. SIT8415.0 Prevents contact electrification.1 1. Thomas, S. et al. J. Am. Chem. Soc. 2009, 131, 8746. SIT8430.0 Review of synthetic utility.1
Converts acid chlorides to acid bromides.2
Deesterifies phosphorus esters.3
Converts nitroalkanes to nitroalkenes.4
Catalyzes the cross-coupling of heteroaromatics.5
Used in the synthesis of unsymmetrical phosphine oxides.6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 92-100.
2. Schmidt, A. H. et al. Synthesis 1981, 216.
3. Chovinard, P. M.; Bartlett, P. A. J. Org. Chem. 1986, 51, 75.
4. Kunetsky, R. A. et al. Tetrahedron Lett. 2005, 46, 5203.
5. Kita, Y. et al. J. Am. Chem. Soc. 2009, 131, 1668.
6. Fougére, C. et al. Eur. J. Org. Chem. 2009, 6048. F&F: Vol. 9, p 73; Vol. 10, p 59; Vol. 11, p 59; Vol. 12, p 799; Vol. 15, p 51; Vol. 16, p 50; Vol. 18, p 380; Vol. 19, p 373; Vol. 20, p 404. SIT8510.0 Review of synthetic utility.1
Review on organosilane protecting groups.2
Enhances Claisen rearrangement.3
Enhances the deprotection of tBOC-protected amino acids.4
Enhances ethylene glycol ketalization reaction.5
Catalyzes the formation of chlorohydrin esters from diols.6
Reviewed as water scavenger in reactions of carbonyl compounds.7
Facilitates Michael additions.8 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 170-182.
2. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
3. Snider, B. B.; Hawryluk, N. A. Org. Synth. 2000, 2, 635.
4. Chen, B. C. et al. J. Org. Chem. 1999, 64, 9294.
5. Chan, T. H. et al. Synthesis 1983, 203.
6. Eras, J. et al. J. Org. Chem. 2002, I, 8631.
7. Volochnuk, D. M. et al. Synthesis 2009, 3719.
8. Xu, L. W. et al. Chem. Commun. 2003, 2570.
F&F: Vol. 1, p 1232; Vol. 2, p 435; Vol.3, p 310; Vol. 4, p 32, p 537; Vol.5, p 709; Vol. 6, p 25; Vol. 7, p 66; Vol. 8, p 107; Vol. 9, p 112; Vol. 10, p 96; Vol. 11, p 125; Vol. 12, p 126; Vol. 13, p 165; Vol. 14, p 175; Vol. 15, p 89; Vol. 16, p 85; Vol. 17, p 79; Vol. 19, p 374; Vol. 20, p 348, p 380, p 404; Vol.21, p 453. SIT8564.0 Key reviews.1,2
Reagent for cleavage of ethers, esters, lactones.3
Used to dechlorinate aryl chlorides.4
Allylates aldehydes in the presence of allyl chloride and tin tetraiodide (SNT7946).5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 325-336.
2. Olah, G. et al. In Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich, Co, 1991; Vol. 1, p.1.
3. DePew, K. M. et al. J. Org. Chem. 1999, 121, 11953.
4. Sako, M. et al. J. Org. Chem. 2001, 66, 3610.
5. Masuyama, Y. et al. Tetrahedron Lett. 2005, 46, 2861. SIT8566.0 Forms lithiomethyl(methoxy)dimethylsilane upon reaction w/ tert-butyllithium.1 1. Bates, T. F. et al. J. Organometal. Chem. 2000, 595, 87. F&F: Vol. 14, p 119. SIT8567.0 Catalyst for urethane foams.1 1. Dahm, M. et al. U.S. Patent 3,620,984, 1971. SIT8570.0 Employed in plasma treatment of surfaces.1
Treatment of titanium alloys and stainless steel surfaces inhibits biofilm formation.2 1. Hendricks, N. et al. Semiconductor Int'l. 2000, 23, 95.
2. Ma, Y. et al. Antimicrob. Agents Chemother. 2012, 56, 5923. F&F: Vol. 1, p 1235; Vol. 2, p 441; Vol. 13, p 101; Vol. 16, p 292. SIT8571.0 Review of synthetic utility.1
Reacts with phenylsulfenyl chlorides at γ-position.2
Used in efficient enantioselective synthesis of tamiflu.3
Undergoes Diels-Alder reactions with high stereoselectivity.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 677-680.
2. Fleming, I. et al. Tetrahedron Lett. 1979, 20, 3205.
3. Yamatsugu, K. et al. Angew. Chem., Int. Ed. Engl. 2009, 48, 1070.
4. Rigby, J. H.; Kierkus, P. C. J. Am. Chem. Soc. 1989, 111, 4125. SIT8571.2 Review of synthetic utility.1
Undergoes photocyclization to 2-cycloalkenones, yielding bicyclic vinylcyclobutanols.2
Copolymerizes with styrene using AIBN.3
Useful Diels-Alder diene yielding substituted cyclohexanones.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 681-684.
2. Demuth, M. et al. Helv. Chim. Acta 1988, 71, 1392; F&F 15: 346.
3. Penelle, J. et al. Polymer Preprints 1996, 37, 521.
4. F&F: Vol. 7, p 401; Vol. 12, p 539. SIT8571.3 Review of synthetic utility.1
Reviewed with other similar heterocycles.2
Used in a vinylogous Mannich reaction to form aminomethyl butenolides.3
Employed in asymmetric vinylogous aldol reaction with aldehydes.4
Adds to allyl acetates to form 5-allyl-γ-butenolides.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 684-693.
2. Casiraghi, G. et al. Synlett 2009, 1525.
3. Akiyama, T. et al. Adv. Synth. Catal. 2008, 350, 399.
4. Singh, R. P. et al. J. Am. Chem. Soc. 2010, 132, 9558.
5. Cho, C.-W.; Krische, M. J. Angew. Chem., Int. Ed. Engl. 2004, 43, 6689. SIT8572.0 Adhesion promoter for photoresists on silicon nitride and titanium nitride.1 1. Endo, M. et al. Micro- and Nanopattering Polymers ACS Symposium; 1998, 706, 337. SIT8575.0 Forms volatile TMS ethers from alcohols and sugars. F&F: Vol. 1, p 1235. SIT8577.0 Intermediate for preparation of trimethylsilylketene.1 1. Olah, G. et al. Synthesis 1989, 568. F&F: Vol. 6, p 631. SIT8579.0 Review of synthetic utility.1
Following lithiation with LDA may be alkylated with organobromides.2
Cyanomethylates quinolinium methiodides.3
α-lithio derivative reacts with aldehydes to give (Z)-α,β-unsaturated nitriles.4
Used to cyanomethylation of aryl bromides.5
Minireview.6
Under lithium acetate catalysis reacts to cyanomethylate aldehydes and ketones.7 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 564-569.
2. Mauze, B. et al. J. Organomet. Chem. 1980, 411, 69.
3. Diaba, F. et al. J. Org. Chem. 2000, 65, 907.
4. Furuta, K. et al. Bull. Chem. Soc. Jpn. 1984, 57, 2768.
5. Wu, L.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15824.
6. Merino-Montiel, P. Synlett 2009, 507.
7. Kawano, Y. et al. Chem. Lett. 2005, 34, 1508. SIT8580.0 Review of synthetic utility.1
Used in the preparation of glycosyl azides.2
Reacts with terminal acetylenes and allyl carbonates to give 1-allyl-3-substituted 1,2,3-triazoles.3
Used to prepare the energetically unstable 2,5,8-triazido-s-heptazine.4
Converts alcohols directly to azides with complete inversion.5
Used in a one-pot, click-conversion of amines to triazoles.6
Converts allyl alcohols to allyl azides.7
Reaction with bridged bicyclic olefins leads to 1,2,3-triazoles by retro-Diels-Alder reaction.8 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 26-31.
2. Soli, E. D.; DeShong, P. J. Org. Chem. 1999, 64, 9724.
3. Kamijo, S. et al. J. Am. Chem. Soc. 2003, 125, 7786.
4. Miller, D. R. et al. J. Am. Chem. Soc. 2004, 126, 5372.
5. Mukaiyama, T. et al. Chem. Lett. 2008, 37, 1072.
6. Savonnet, M. et al. J. Am. Chem. Soc. 2010, 132, 4418.
7. Ruepling, M. et al. Org. Lett. 2012, 15, 768.
8. Peterson, W. et al. J. Organomet. Chem. 1976, 121, 285. F&F: Vol. 1, p 1236; Vol. 3, p 316; Vol. 5, p 354, p 719; Vol. 6, p 561, p 632; Vol. 9, p 21; Vol. 10, p 14, p 113; Vol. 11, p 32; Vol. 12, p 37; Vol. 13, p 34; Vol. 14, p 25; Vol. 15, p 16, p 342; Vol. 16, p 17; Vol. 17, p 23,p 157,p 378; Vol. 18, p 379, p 380; Vol. 19, p 371; Vol. 20, p 201,p 403; Vol. 21, p 151. SIT8582.0 Undergoes Reformatsky reactions.1 1. Boldrini, G. et al. J. Org. Chem. 1983, 48, 4108. SIT8582.5 Employed in [3+2] annulations of five-membered rings.1 1. Danheiser, R. et al. J. Am. Chem. Soc. 1981, 103, 1604. SIT8583.0 Phosphate ester adds to α,β-unsaturated malonates.1
Useful in silicon-mediated Sonogashira cross-coupling reactions to give substituted propargyl alcohols.2 1. Song, Y. et al. Org. Lett. 2001, 3, 3543.
2. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIT8584.0 Sulfonation reagent.1 1. Schmidt, M. et al. Chem. Ber. 1962, 95, 47. SIT8585.0 Reviews.1,2
Undergoes very rapid Al-MCM-41-catalyzed reactions with aldehydes and ketones.10
Converts alcohols to isocyanides in good yields.11
Oxidatively α-cyanates tertiary amines.12
Employed in 3-component, one-pot Strecker conversion of aldehydes to α-amino nitriles.13,14
Efficient conversion of carbonyls to cyanohydrins catalyzed by Cu(II) trifluoromethanesulfonate.3
Treatment with methanol generates HCN solutions.4
Adds to aldehydes with high stereoselectivity.5
Adds HCN to benzylhydrazones.6
Opens epoxides with high enantioselectivity.7
Converts tertiary alcohols to isocyanides.8
Used to protect aldehydes in formation of aldehyde-functional Grignard reagents.9 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 184-189.
10. Iwanami, K. et al. J. Chem. Soc., Chem. Commun. 2008, 1002.
11. Okada, I.; Kitano, Y. Synthesis, 2011, 3997.
12. Han. W.; Ofial, A. R. J. Chem. Soc., Chem. Commun. 2009, 5024.
13. Karmekar, B.; Banerji, J. Tetrahedron Lett. 2010, 51, 2748.
14. Niknam, K. et al. Tetrahedron Lett. 2010, 51, 2959.
2. Rasmussen, J. et al. In Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich, Co, 1991; Vol. 1, p65.
3. Saravanan, D. et al. Tetrahedron Lett. 1998, 39, 3823.
4. Vachel, P.; Jacobsen, E. N. Org. Lett. 2000, 2, 867.
5. Belokon, Y. N.; North, M. Org. Lett. 2000, 2, 1617.
6. Manabe, K. et al. J. Org. Chem. 1999, 64, 8054.
7. Schaus, S. E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001.
8. Kitano, Y. et al. Synthesis 2001, 437.
9. Liu, C.-Y. et al. Org. Lett. 2006, 8, 617. SIT8588.1 Review.1
Converts alcohols to terminal olefins in a tandem oxidation-olefination sequence.10
Reacts with propargylic esters to form functionalized (Z)-1-trimethylsilyl-1,3-dienes.11
Methenylates α-fluoro ketones.2
Converts aldehydes to acrylonitriles.3
Converts benzyl bromides to styrenes.4
Homologates organoboranes.5
Converts acid chlorides to diazomethylketones.6
Converts aldehydes to terminal olefins.7
Chloromagnesium reagent reacts with α-keto esters to give t-butylpropiolates.8
Forms trimethylsilylcyclopropanes with enones.9 1. Anderson, R.; Anderson, S. Trimethylsilyldiazomethane. In Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich, Co, 1991; Vol. 1, p 303.
10. Davi, M.; Lebel, H. Org. Lett. 2009, 11, 41
11. Bray, C. V.-L. et al. Angew. Chem., Int. Ed. Engl. 2009, 48, 1439.
2. Label, H.; Paquet, V. Org. Lett. 2002, 4, 1671.
3. Furuta, K. et al. Bull. Chem. Soc. Jpn. 1984, 57, 2768.
4. Greenman, K. L. et al. Tetrahedron 2001, 57, 5219.
5. Goddard, W. J.-P. et al. Org. Lett. 2000, 2, 1455.
6. Myers, A. G. et al. J. Am. Chem. Soc. 2001, 123, 7207.
7. Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320.
8. Hari, Y. et al. Tetrahedron Lett. 2008, 49, 4965.
9. Glass, A. C. et al. Org. Lett.. 2008, 10, 4855.
F&F: Vol. 4, p 543; Vol. 8, p 198; Vol. 10, p 431; Vol. 11, p 573; Vol. 12, p 538; Vol. 13, p 327; Vol. 15, p 344; Vol. 16, p 361; Vol. 19, p 55; Vol. 20, p 405, p 406; Vol. 21, p 128, p 239, p 456. SIT8588.5 Review of synthetic utility.1
Hydroxyl group protection reagent, cleaved with fluoride.2
Useful in the introduction of a protected hydroxymethyl moiety.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 628-632.
2. Lipshutz, B. et al. Tetrahedron Lett. 1980, 21, 3343.
3. Eichelberger, U. et al. Tetrahedron 2002, 58, 545. F&F: Vol. 10, p 431; Vol. 15, p 344; Vol. 16, p 361. SIT8588.8 Converts vinyl mesylates to enynes.1 1. Barret, D. et al. J. Antibiotics 1997, 50, 100. SIT8589.0 Review of synthetic utility.1
Employed in synthesis of acylsilanes.2
With BrF3 converts the oxygen of aldehydes and ketones to difluoromethyl groups.3
Used in the preparation of acylsilanes.4
Used in the preparation of unsaturated dithioketene acetals in a Peterson reaction.5
Important reagent for Type I Anion Relay Chemistry (ARC).6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 604-609.
2. Corey, E. J. et al. J. Am. Chem. Soc. 1967, 89, 434.
3. Cohen, O. et al. Tetrahedron 2009, 65, 1361.
4. Brinkmeyer, R. S. Tetrahedron Lett. 1979, 20, 207.
5. Carey, F. A.; Court, A. S. J. Org. Chem. 1972, 37, 4474.
6. Smith, A. B., III; Wuest, W. M. Chem. Commun. 2008, 5883. F&F: Vol. 4, p 284; Vol. 10, p 380. SIT8589.2 Review of synthetic utility.1
Serves as an alcohol equivalent in reaction with aryl iodides.2
Can provide protection for the anomeric center of carbohydrates.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 622-627.
2. Dibakar, M. et al. Tetrahedron Lett. 2011, 41, 5338.
3. Sowell, C. G. et al. Tetrahedron Lett. 1996, 37, 609. F&F: Vol. 8, p 510. SIT8589.7 Undergoes Pd-catalyzed hydroesterification to form β-ethoxyvinylsilanes.1 1. Takeuchi, R. J. Chem. Soc., Perkin. Trans. 1 1993, 1031. SIT8590.0 Review of synthetic utility.1
Shown to open an epoxide in a syn fashion.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 640-645.
2. Adam, W. et al. J. Am. Chem. Soc. 1991, 113, 8005. F&F: Vol. 2, p 412; Vol. 3, p 148; Vol. 7, p 399; Vol. 11, p 575. SIT8591.0 Converts Grignards to amides.1
Reacts with diamines under pressure to form polyureas.2 1. Zh. Obshch. Khim. 1989, 59, 1202; F&F: 6, 634.
2. DiSalvo, A. U.S. Patent 3,940,370, 1976. SIT8592.0 Heterocumulene reagent.1
Forms 1,2-diisothiocyanates from olefins with [bis(acetoxy)iodo]benzene.2 1. Neidelhein, R. et al. Synthesis 1975, 51.
2. Bruno, M. et al. Tetrahedron Lett. 1998, 39, 3847. SIT8593.5 F&F: Vol. 6, p 635; Vol. 9, p 495; Vol. 10, p 443; Vol. 11, p 581. SIT8594.0 Review of synthetic utility.1
Promotes the conversion of alkyl halides to (E)-β-alkylstyrenes.2
Highly useful inert ligand for the addition of Grignard reagents to aldehydes and ketones without enolization side reactions.3 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 666-674.
2. Ikeda, Y. et al. J. Am. Chem. Soc. 2002, 124, 6514.
3. Hatano, M. et al. J. Org. Chem. 2010, 75, 5008. F&F: Vol. 6, p 636; Vol. 10, p 433; Vol. 15, p 343; Vol. 16, p 118; Vol. 18, p 384. SIT8594.5 Treatment with nBuLi affords Me3SiCH2Li, methenylation reagent.1 1. Seitz, D. et al. Synthesis 1981, 557. F&F: Vol. 11, p 581. SIT8595.0 Generation of azomethine ylides.1
Review on ylides from α-silylonium salts.2
Ylide precursor.3
Used to prepare imino[60]fullerenes.4 1. Padwa, A. et al. J. Org. Chem. 1979, 49, 3314.
2. Vedejs, E.; West, F. G. Chem. Rev. 1986, 86, 941.
3. F&F: Vol. 10, p 434; Vol.12, p 541; Vol. 13, p 329; Vol. 14, p 332.
4. Matsuo, K. et al. Org. Lett. 2009, 11, 4192. SIT8598.0 Reacts with Me3SiOR to form ReO3(OR).1
Catalyzes Prins cyclization reaction between homoallylic alcohols and aldehydes.2 1. Hermann, W. et al. Inorg. Chem. 1997, 36, 465.
2. Tadpetch, K.; Rychnovsky, S. D. Org. Lett. 2008, 10, 4839. SIT8598.5 Review of synthetic utility.1
Used as a convenient source of in-situ-generated benzyne.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 697-699.
2. Zhang, X.; Larock, R. C. Org. Lett. 2005, 7, 3973. SIT8599.0 Water (D2O) soluble reference for NMR.1 1. Konishi, Y.; Scheraga, H. A. Biochemistry 1980, 19, 1316. SIT8603.3 Potential for the synthesis of 3-subsubstituted alkynals.2 2. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011 SIT8604.0 Useful in silicon-mediated Sonogashira cross-coupling reactions to give substituted propargyl alcohols.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011.
F&F: Vol. 10, p 70; Vol. 11, p 164. SIT8605.0 Forms polymers that undergo "click" chemistry.1,2 1. Quemener, D. et al. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 155.
2. Ladmiril, V. et al. J. Am. Chem. Soc., 2006, 128, 4823. SIT8606.3 Used in the preparation of 1,3,5-triynes.1 1. Mukai, C. et al. J. Org. Chem. 2001, 66, 5875. SIT8606.5 Forms polymers with very high oxygen permeability.1
Polymerization catalyzed with TaCl5/(C6H5)3Bi.2
Converts aldehydes to 1,3-dienes in presence of Cp2Zr(H)Cl.3
Synthetic reagent.4
Used in the preparation of alkynylxenon fluoride.5
Useful in silicon-mediated Sonogashira cross-coupling reactions.6 1. Masuda, T. et al. J. Am. Chem. Soc. 1983, 105, 7473.
2. Masuda, T. et al. J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 1353.
3. Maeta, H. et al. Tetrahedron Lett. 1992, 33, 5969.
4. F&F: Vol. 2, p 239; Vol. 6, p 638.
5. Schmidt, H. et al. Inorg. Chem. 2004, 43, 1837.
6. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIT8606.6 Potential for the preparation of propiolic acid derivatives.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011. SIT8606.7 Employed in synthesis of terminal enynes.1,2 1. Corey, E. J.; Ruden, R. A. Tetrahedron Lett. 1973, 14, 1495.
2. Corey, E. J. et al. Tetrahedron Lett. 1973, 14, 3963. SIT8612.0 Review of synthetic utility.1
Convenient substitute for 2-lithiothiazole for introducing various substituents at C-2 of the thiazole ring.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 712-719.
2. Dondoni, A. et al. J. Org. Chem. 1988, 53, 1748. F&F: Vol. 16, p 362. SIT8612.9 Undergoes Diels-Alder reactions.1 1. Peterson, W. et al. J.Organomet. Chem. 1976, 121, 285. SIT8613.0 Reagent for preparation of phosphorus triazolides.1 1. Kricheldorf, M. et al. Angew. Chem. 1976, 88, 337. F&F: Vol. 4, p 66. SIT8616.0 Reagent for trichloromethylation of ketones.1 1. DeJesus, M. et al. Synth. Commun. 1987, 17, 1047. SIT8618.0 For ring opening of cyclopropyl ketones.1 1. Demuth. M. et al. Helv. Chim. Acta 1981, 64, 2759. SIT8620.0 Review of synthetic utility.1
Review on organosilane protecting groups.2
Reacts with ketones to form silyl enol ethers; Review.3
Enhances the addition of terminal acetylenes to aldehydes.4
Used in the nickel-catalyzed direct phenylation of C-H bonds in heteroaromatic system such as benzoxazoles.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 518-537.
2. Larson, G. L. “Silicon-Based Blocking Agents” Gelest, Inc. 2014.
3. Simchen, G. In Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich, Co, 1991; Vol. 1, p189.
4. Downey, C. W. et al. J. Org. Chem. 2009, 74, 2904.
5. Hachilya, H. et al. Angew. Chem., Int. Ed. Engl. 2010, 49, 2202. F&F: Vol. 6, p 639; Vol. 8, p 497; Vol. 10, p 438; Vol. 11, p 584; Vol. 12, p 543; Vol. 13, p 118, p 149, p 187, p 321, p 329; Vol. 14, p 119, p 202, p 259, p 321, p 333; Vol. 15, p 66, p 102, p 108, p 346; Vol. 16, p 49, p 112, p 138, p 278, p 363; Vol. 17, p 26, p 379; Vol. 18, p 23, p 57, p 383; Vol. 20, p 408; Vol. 21, p 460. SIT8623.0 Potential for the synthesis of 3-substituted propiolic acid derivatives.1 1. Larson, G. L. “Silicon-Based Cross-Coupling Reagents” Gelest, Inc. 2011 SIT8628.0 Converts aryl chlorides to anilines.1 1. Huang, X.; Buchwald, S. L. Org. Lett. 2001, 3, 3417. SIT8645.0 Review of synthetic utility.1
Ether derivatives hydrolyze in acid at 0.25% the rate of corresponding Me3Si ethers.2
Reacts with AlBr3 and CO2 to directly form carboxylic acids from arenes and aryl halides.3
Used in the kinetic resolution of secondary alcohols.4
Used In an anion-relay approach to prepare sterically encumbered chiral binaphthols.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 182-184.
2. Sommer, L. H. Stereochemistry, Mechanism and Silicon; McGraw-Hill: 1965; p. 126.
3. Nemoto, K. et al. J. Org. Chem. 2010, 75, 7855.
4. Sheppard, C. I. et al. Org. Lett. 2011, 13, 3794.
5. Maruoka, K. et al. Bull. Chem. Soc. Jpn. 1988, 61, 2975. SIT8665.0 Review of synthetic utility.1
In presence of di-t-butylperoxide reduces esters to hydrocarbons.2
Undergoes dehydrogenative coupling with alcohols.2 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 733-739.
2. Sano, H. et al. Chem. Lett. 1986, 77.
3. Yamanoi, Y. J. Org. Chem. 2005, 70, 9607. F&F: Vol. 12, p 209; Vol. 13, p 334. SIT8695.0 Shifts double bond in terpenes.1 1. F&F: Vol. 6, p 655. SIT8709.3 Single source precursor for beta-SiC by LPCVD at 800-1,000°.1 1. Lienhard, M. et al. in “Chemical Aspects of Electronic Ceramics Processing” Arkles, B. ed., MRS Proc. 1998, 495, 139. SIT8709.6 Employed in low-temperature CVD of silicon and silicon alloys.1,2
Forms silicon nanowires initiated by gold seeds.3 1. Akhtar, M. et al. MRS Proc. 1986, 70.
2. Todd, M. et al. U.S. Patent 6,821,825, 2004.
3. Heitsch, A. et al. J. Am. Chem. Soc. 2008, 130, 5436. SIT8709.8 Employed in PECVD of silicon carbide and silicon carbonitride “seed” layers.1 1. Weidman, T. et al. US Patent Appl. 2012/0122302 A1, 2012. SIT8710.5 Reagent for immobilization of rhodium catalysts.1 1. Marciniec, B. et al. J. Mol. Cat. 1987, 42, 195. SIT8714.0 Hydrosilylates olefins in presence of Rh2Cl2(CO)41; reacts with ammonia to form silicon nitride prepolymers.1
Employed in low pressure CVD of silicon nitride.2 1. Review: Kanner, B. et al. In Silicon Chemistry; Corey, J. et al. Ed.; Wiley, 1988; p.123.
2. Levy, R. et al. J. Mater. Res. 1996, 11, 1483. SIT8715.0 Soluble source for anhydrous fluoride ion.1 1. Middleton, W. J. U.S. Patent 3,940,402, 1976. F&F: Vol. 10, p 452. SIT8717.0 Forms periodic mesoporous silicas.1 1. Zhang, W. et al. Chem. Mater. 2007, 19, 2663. SIT8718.0 Source for borosilicate glass by CVD at 800°.1 1. Treichel, H. et al. Chem. Abstr. 109, 241901u; J. Phys., Colloq (C4 Solid State Res. Conf) 1988. SIT8719.5 Water contact angle: advancing = receding = 104˚.1 1. McCarthy, T. et al. Langmuir 1999, 15, 7328. SIT8720.0 Converts acid chlorides to hydroxymethylketones.1 1. Wissner, A. J. Org. Chem. 1979, 44, 4617. F&F: Vol. 8, p 523; Vol. 9, p 512. SIT8722.0 Review of synthetic utility.1
Sterically demanding "trisyl" group.2,3
Linear, thermally-induced NMR shifts.4
Metalation occurs with MeLi to form tris(trimethylsilyl)methyllithium.5
Reacts with LiOMe to form bis(trimethylsilyl)methyllithium.6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 746-747.
2. Cowley, A. Inorg. Synth. 1990, 27, 235.
3. Eaborn, C. et al. J. Organomet. Chem. 1975, 101, C40.
4. Sikorsky, W. et al. Magn. Reson. Chem. 1998, 36, 5118.
5. Cook, M. A. et al. J. Organomet. Chem. 1970, 24, 529.
6. Sakurai, H. et al. Tetrahedron Lett. 1973, 4193. F&F: Vol. 20, p 422. SIT8723.0 Cocatalyst for epoxidation of allyl-TMS ethers with silylperoxides.1
Film-forming additive for lithium-ion battery cathodes.2,3 1. Hiyama, T., Obayashi, M. Tetrahedron Lett. 1983, 24, 395.
2. Kong, L. et al. 15th Int'l Meeting on Lithium Batteries – IMLB 2010, Electrochem. Soc. Proc. 196, 2010.
3. Yan, G. et al. J. Power Sources 2014, 248, 1306. SIT8723.4 Review of synthetic utility.1
In combination with indium acetate forms InP quantum dots.2,3
Promotes borylative dienylation/aldeyhyde coupling.4
Reaction with methyllithium gives lithium bis(trimethylsilyl)phosphide,5 which reacts with dialkylformamides to give functional phosphaalkenes.6 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 422-427.
2. Bharal, D. et al. J. Am. Chem. Soc. 2005, 127, 11364.
3. Kim, S. et al. J. Am. Chem. Soc. 2005, 127, 10526.
4. Cho, H. Y.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 7576.
5. Askham, F. R. et al. J. Am. Chem. Soc. 1985, 107, 7423.
6. Prischenko, A. A. et al. Heteroatom. Chem. 2010, 21, 441. SIT8723.6 Reacts with aryl bromides yielding arylbis(trimethylsilyl)phosphonic acid esters.1
Used for mild preparation of bis(TMS)phosphonates (Arbuzov reaction).2 1. Demik, N. N. et al. Chem. Abstr. 1991, 115, 183.
2. Rosenthol, A. F. et al. Tetrahedron Lett. 1975, 16, 977. SIT8724.0 Reviews.1,2
Efficient mediator in organic radical reactions.3
Initiates addition of alkyl iodides to activated olefins.4
Initiates and promotes the radical addition of perfluoroalkyl iodides to olefins in water.5
Hydrosilylates olefins in aqueous systems in presence of azo initiators.6
Reacts with MeLi to form tris(trimethylsilyl)methyllithium.7
Reacts with LiOMe to form bis(trimethylsilyl)methyllithium.8 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 747-754.
2. Chatgilialoglu, C. Chem. Eur. J. 2008, 14, 2310.
3. Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
4. Kishimoto, Y.; Ikariya, T. J. Org. Chem. 2000, 65, 7656.
5. Barata-Vallejo, S.; Postigo, A. J. Org. Chem. 2010, 75, 6141.
6. Postigo, A. et al. Organometallics 2009, 28, 3282.
7. Cook, M. A. et al. J. Organomet. Chem. 1970, 24, 529.
8. Sakurai, H. et al. Tetrahedron Lett. 1973, 4193. SIT8729.0 Intermediate for dendritic structures.1 1. Hosmane, N. et al. J. Organomet. Chem. 2009, 694, 1690. SIT8735.5 Intermediate for phosphinoalkylsilanes.1 1. Joslin, F. Inorg. Chem. 1993, 32, 7221. SIT8736.0 Precursor of vinylsilazane preceramic polymers.1
Reacts with photoresists to give RIE resistance.2
Intermediate for polyborosilazanes.3 1. Toreki, W. et al. Ceram. Eng. Sci. Proc. 1990, 11, 1371.
2. Babich, E. et al. Microelectron. Eng. 1990, 11, 503.
3. Nghiem, Q.-D.; Kim, D.-P. J. Mater. Chem. 2005, 15, 2188. SIT8737.0 Reagent for vinylations via cross-coupling protocols.1,2 1. Denmark, S. E.; Wang, Z. J. Organomet. Chem. 2001, 624, 372.
2. Denmark, S. E.; Butler, C. R. J. Am. Chem. Soc. 2008, 130, 3690. SIT8780.0 Anions self-assemble in monolayers on silver surfaces.1 1. Ge, M. et al. J. Am. Chem. Soc. 1996, 118, 5812. SIU9047.0 Derivatizable patterns formed by dip-pen nanolithography.1 1. Kooi, S. et al. Adv. Mater. 2004, 16, 1013 SIV9060.0 Catalyst for aldol formation.1 1. Trost, B. et al. Chem. - Eur. J. 2015, 21, 15108. SIV9063.0 Precursor to α-silyl acetaldehyde.1 1. Cunico, R. Tetrahedron Lett. 1986, 27, 4269. SIV9065.0 Intermediate for the preparation of photocureable non-linear optical polymers.1
Isomerizes in presence of FeCl3 to cyclopropyldimethylchlorosilane.2 1. LaBamy, P. et al. Chem. Abstr. 116, 107441k; Fr. Demande 2659340, 1991.
2. Zhun, V. et al. Zh. Obshch. Chem. 1990, 60, 1111. SIV9070.0 Review of synthetic utility.1
Used in synthesis of highly substituted unsaturated alcohols.2
Reductively cross-couples with allyl alcohols to form butenols after oxidation.3
Used to silylate unsaturated alcohols, which can be RCM-cyclized to a vinylsilyl ether, which in turn can be subjected to a silicon-based cross-coupling.4 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 157-161.
2. Denmark, S. E.; Lang, S. M. Org. Lett. 2001, 3, 1749.
3. Belardi J. K.; Micalizio, G. C. J. Am. Chem. Soc. 2008, 130, 16870.
4. Denmark, S. E.; Yang, S.-M. Org. Lett. 2003, 3, 1749. SIV9072.0 Vinylates aryl halides.1 1. Denmark, S. E.; Butler, C. R. J. Am. Chem. Soc. 2008, 130, 3690. SIV9073.0 Undergoes photochemical addition of Me2PH to yield ligand.1 1. Grobe, J. et al. Z. Anorg. Allg. Chem. 1991, 592, 121. SIV9074.0 Employed in the conversion of β-haloethanols to homoallylic alcohols.1 1. Sugimoto, I. et al. J. Org. Chem. 1999, 64, 7153. SIV9082.0 Polymerization initiated with peroxides or polysilanes.1 1. Smenov, V. et al. Dokl. Akad. Nauk SSSR 1989, 309, 119. SIV9084.0 Used as a tether in synthesis of C-glycosides.1
Reacts to vinylate aryl halides under NaOH-moderated conditions.2 1. Shuto, S. et al. J. Org. Chem. 2000, 65, 5547.
2. Hagiwara, E. et al. Tetrahedron Lett. 1997, 38, 439. SIV9089.0 Polymerized with SnCl4 or EtAlCl2 catalysts.1,2
Reacts with benzyl methyl ethers to form β-methoxyaldehydes.3 1. Murahasi, S. et al. J. Polym. Sci., Polym. Lett. Ed. 1965, 3, 245.
2. Nozakura, S. et al. J. Polym. Sci. 1973, 11, 1053.
3. Ying, B.-P. et al. Org. Lett. 2004, 6, 1523. SIV9093.0 Undergoes BuLi-catalyzed anionic polymerizations.1,2 1. Gan, Y. et al. Polymer Preprints 1993, 34, 548.
2. Rickle, G. J. Macromol Sci., Chem. 1986, A23, 1287. SIV9110.0 F&F: Vol. 5, p 749. SIV9112.0 Reacts with enamines to give (E)-β-silylenamines, which cross-couple w/ aryl iodides to give β-aryl enamines.1
Extensive review on the use in silicon-based cross-coupling reactions.2 1. Marciniec, B. et al. J. Org. Chem. 2005, 70, 8550.
2. Denmark, S. E. et al. Organic Reactions, Vol. 75, Denmark, S. E. ed., John Wiley and Sons, 233, 2011. SIV9220.0 Employed in two-stage1 and one-stage2 graft polymerization/crosslinking for PE
Copolymerizes with ethylene to form moisture crosslinkable polymers.3
Converts arylselenyl bromides to arylvinylselenides.4
Reacts with anhydrides to transfer both vinyl and methoxy and thus form the mixed diester.5
Cross-couples w/ α-bromo esters to give α-vinyl esters in high ee.6 1. Scott, H. U.S. Patent 3,646,155, 1972.
2. Swarbrick, P. et al. U.S. Patent 4,117,195, 1978.
3. Isaka, T. et al. U.S. Patent 4,413,066, 1983.
4. Bhadra, S. et al. J. Org. Chem. 2010, 75, 4864.
5. Luo, F. et al. J. Org. Chem. 2010, 75, 5379.
6. Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. Engl. 2007, 46, 3556. SIV9220.2 Graft-coupling agent for grafted polyethylene composites.1 1. Arkles, B. et al, Modern Plastics 1987, 64, 38. SIV9250.0 Review of synthetic utility.1
Polymerization catalyzed by alkyllithium compounds.2,3,4
Synthetic reactions of vinylsilanes reviewed.5,6
Undergoes Heck coupling to (E)-β-substituted vinyltrimethylsilanes, which can be cross-coupled further.7
Reacts w/ azides to form trimethylsilyl-substituted aziridines.8 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 755-761.
2. Oku, J. et al. Polymer J. 1991, 23, 1377; Macromolecules 1992, 25, 2780.
3. Gan, Y. et al. Macromolecules 1996, 29, 8285.
4. Rickle, G. J. Macromol. Sci. 1987, A24, 93.
5. Hudrlik, P. In New Applications of Organometallic Reagents in Organic Synthesis; Seyferth, D., Ed.; Elsevier: 1976.
6. F&F: Vol. 5, p 375; Vol. 6, p 637.
7. Jeffery, T. Tetrahedron Lett. 1999, 40, 1673.
8. Bassindale, A. R. et al. J. Chem. Soc., Perkin Trans. 1 2000, 1173. F&F: Vol. 9, p 498; Vol. 10, p 44; Vol. 11, p 41; Vol. 12, p 566. SIV9265.0 SIV9275.0 Coupling agent for kaolin in EPDM/PE cable formulations.1 1. Arkles, B. et al. Modern Plastics 1987, 64, 138. SIZ9700.0 Converts aryl bromides and chlorides to anilines.1 1. Lee, D.-Y.; Hartwig, J. F. Org. Lett. 2005, 7, 1169. SIZ9810.0 Precursor for ALD of ZrO2.1 1. Nam, W. et al. Chem. Vap. Deposition 2004, 10, 201. SIZ9850.0 Forms zirconium boride ceramics in combination with SiB6.1 1. Low, I. Key Eng. Mater. 1992, 53b, 592. SMS-992 Crosslinker for gradient modulus polymers.1 1. Klaussen, K. et al. Polymer, 2014, 55, 29. SNA0310 Copolymerizes with styrene.1
Copolymerizes with methyl methacrylate, acrylamide.2,3 1. Shostakovskii, M. et al. Chem. Abstr. 57, 10027; Vysokomolekul. Soedin. 1961, 3, 1128.
2. Ikladious, N. et al. Polymer 1983, 24, 1635.
3. Messiha, N. et al. Eur. Polym. J. 1980, 15, 1047. SNA0330 Polymerization initiated with AIBN at 80-100°.1 1. Androva, N. et al. Chem. Abstr. 58, 8952; Izv. Akad. Nauk., Ser. Khim. 1962, 1804. SNA0500 Reviewed.1
Conjugatively allylates alkylidene Meldrum’s acids.10
Generates homoallylic amines with aldehydes and amines.11
Allylates bromides and chloroethers.,2,3
Radical initiation induces 1,2-addition of allyltins and alkyl iodides to electron deficient alkenes.4
Polymerization by Natta catalyst - Et3Al-TiCl4.5
Converts aldehydes to homoallylic alcohols and imines to homoallylic amines.6
Converts combination of aldehyde and amine to homoallylic amines.7
Enantioselectively generates homoallylic amines in a 3-component reaction scheme.8
Adds enantioselectively to prochiral ketones to form homoallyl alcohols in good enantioselectively.9 1. Castellino, S. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 1, 125-128.
10. Duma, A. N.; Fillion, E. Org. Lett. 2009, 11, 1919.
11. Narsaiah, A. et al. Synthesis, 2010, 1609.
2. Corey, E. et al. Tetrahedron Lett. 1990, 31, 3715.
3. Keck, G. et al. J. Am. Chem. Soc. 1982, 104, 5829.
4. Mizuno, K. et al. F&F: Vol. 14, p 16; J. Am. Chem. Soc. 1988, 110, 1288.
5. Montecatini. Soc. Chem. Abstr. 53, 1837; Ital. Patent 589,299, 1959.
6. Shen, W. et al. Tetrahedron Lett. 2008, 49, 4047.
7. Kalita, P. K.; Phukan, P. Tetrahedron Lett. 2008, 49, 5495.
8. Li, X. et al. Chem. Eur. J. 2008 14, 4796.
9. Lu, J. et al. Tetrahedron Lett. 2005, 46, 7435. F&F: Vol. 9, p 8; Vol. 11, p 15; Vol. 12, p 21; Vol. 13, p. 10; Vol. 14, p. 14; Vol. 16, p. 7; Vol. 17, p 12. SNA0560 Forms homoallylic alcohols on reaction with carbonyls in the presence of BF3 etherate.1 1. Naruta, Y. et al. F&F: Vol. 9, p 8; Chem. Lett. 1979, 919. SNA0580 Employed in preparation of allyl lithium.1,2
Conjugatively allylates alkylidene Meldrum’s acids.3 1. Yamamoto, Y. et al. J. Am. Chem. Soc. 1981, 103, 1969.
2. Seyferth, D. et al. J. Organomet. Chem. 1971, 28, 173.
3. Duma, A. N.; Fillion, E. Org. Lett. 2009, 11, 1919. F&F: Vol. 13, p 14; Vol. 14, p 20. SNB1025 Promotes conversion of aldehydes and ketones to N,N-dialkyleneamines.1,2 1. Burnell-Curty, C. et al. J. Org. Chem. 1992, 57, 5063.
2. Burnell-Curty, C. et al. Synlett 1993, 131. SNB1100 Catalyst for the formation of carbamates from isocyanates and alcohols.1
Employed in formation of SnOx coating by MOCVD.2
Forms conductive indium-tin oxide films.3 1. Francis, T. et al. F&F: Vol. 7, p 346; Can. J. Chem. 1976, 54, 24.
2. Mantese, J. et al. MRS Bull. 1989,14(10), 48.
3. Sato, G. et al. Chem. Abstr. 111, 222261k; Jpn. Patent 01,116,082, 1989. SNB1250 Intermediate for stereo-controlled reductions.1 1. Dakternieks, D. et al. Organometallics 1999, 18, 3342. SNB1750 Photostabilizer, flame-retardant additive for polyolefins.1
Plasma deposited films for carbon monoxide sensors.2 1. Cullis, C. et al. Eur. Polym. J. 1990, 26, 919.
2. Inagaki, N. J. Appl. Polym. Sci., Appl. Polym. Symp. 1990, 46, 173. SNB1792 Decarboxylates at decomposition temperature.1 1. Luitgen, J. et al. Rec. Trav. Chim. 1963, 82, 1179. SNB1794 Used in the Michael addition of (E)-tributylstannylethylene unit to enones.1 1. Corey, E. et al. J .Am. Chem. Soc. 1974, 96, 5581. SNB1800 Converts amines to dithiocarbamates.1
Mild oxidizing agent in combination with bromine.2 1. Giboreau, P. et al. J. Org. Chem. 1994, 59, 1205.
2. Ueno, Y. et al. Tetrahedron Lett. 1977, 2413. F&F: Vol. 6, p 56; Vol. 7, p 26; Vol. 8, p 43; Vol. 9, p. 53; Vol. 11, p. 62; Vol. 13, p. 41; Vol. 15, p 39; Vol. 20, p. 50. SNB1805 Reviewed.1
Boron trichloride complex reviewed.2
Sulfuration reagent - converts ketones to thiocarbonyls3, 1,4-diketones to thiophenes.4 1. Steliou, K. e-EROS, 2001.
2. Jousseaume, B. Science of Synthesis 2003, 5, 383.
3. Steliou, K. et al. J. Am. Chem. Soc. 1982, 104, 3104.
4. Freeman, F. et al. J. Org. Chem. 1992, 57, 1722. SNB1879 Acaricide.1 1. Horne, Jr., C. A. U.S. Patent 3,657,451, 1970. SNB1920 Precursor to SnS binary semiconductor.1
Converts aromatic 1,4-butanediones to arylthiophenes.2 1. Boudjouk, P. et al. Chem. Mater. 1994, 6, 2108.
2. Freeman, F. et al. J. Org. Chem. 1992, 57, 1722. SNB1960 Employed in adhesives and coatings with indirect food contact.1 1. Federal Register, 1989, 54(227), 48857-9. SNB2000 In combination with fluorides produces doped films of tin oxide on glass at 650° used for low-emissivity windows.1
Catalyst for epoxidation and polymerization reactions.2 1. Gitlitz, M. et al. CHEMTECH 1992, 22, 552.
2. F&F: Vol. 15, p 65. SNB2050 At <= 0.2% catalyzes polyester used in indirect food contact.1 1. Federal Register, 1989, 54(227), 48857-9. SNC2290 Reagent for saturated nitrogen heterocycle synthesis from aldehydes.1 1. Vo, C. et al. Nature Chem. 2014, 6, 310. SNC2308 May be converted to trimethylstannylcarbene.1 1. Olofson, R. et al. Tetrahedron Lett. 1978, 1677. F&F: Vol. 8, p 307. SNC2500 Reagent for the preparation of metallocenes, e.g. Mo,1 Hf ,2 and Ru.3 1. Bottomley, F. et al. Organometallics 1990, 9, 1166.
2. Lund, E. et al. Organometallics 1990, 9, 2426.
3. Liles, D. et al. J. Organomet. Chem. 1985, 288, C33. SND2600 Catalyst for the preparation of dialkylcarbonates from CO2 and propylene.1 1. Chem. Abstr. 112, 234823d, 1990; Jpn. Patent 01 311,054, 1989. SND2700 Employed in CVD of indium-tin oxide films.1 1. Maruyama, T.; Tabata, K. Jpn. J. Appl. Phys., Part 2 1990, 29, L355. SND2730 Converts carbonyls to homoallylic alcohols.1 1. Chan, T. et al. J. Org. Chem. 1999, 64, 4452. SND2900 Charge control agent for toner powder.1 1. Shindo, S. et al. Chem. Abstr. 113, 241462j; Jpn. Patent 01,310,360, 1989. SND2950 Catalyst in silicone RTV cures.1,2
Used in preparation of transparent electrically conductive films.3 1. Lockhardt, T. et al. U.S. Patent 4,517,337, 1985.
2. Wengrovius, J. U.S. Patent 4,788,170, 1988.
3. Tanaka, T. et al. Chem. Abstr. 105: 8069mj; Jpn. Patent 01,245,779, 1985. SND3110 Catalyst for two-component condensation cure silicone RTVs.1 1. Chadho, R. et al. U.S. Patent 3,574,785, 1971. SND3164 Substrate for electron beam polymerization.1 1. Davidson, R. et al. Polymer 1992, 33, 1836. SND3250 Catalyzes condensations of cyclic ketones with amines to form imines.1
Blocking agent for diols.2
Effective phase transfer catalyst.3
Forms high M.W. polystannanes by Wurtz coupling.4
Catalyzes phenylsilane reductive aminations of aldehydes and ketones.5 1. Stetin, C. et al. Synth. Commun. 1982, 12, 495.
2. Izquierdo, C. Chem. Abstr. 112, 21205s; An. Quim., Ser. 6 1988, 84, 340.
3. Armstrong, D. et al. Tetrahedron Lett. 1979, 47, 4525.
4. Devylder, N. et al. J. Chem. Soc., Chem. Commun. 1996, 711.
5. Apodaca, R.; Xiao, W. Org Lett. 2001, 3, 1745. SND3253 Intermediate for "tunable" Lewis acid promoter.1
Intermediate for cyclic tristannoxane and heteroatom tricyclics.2 1. McKinney, R. et al. Organometallics 1989, 8, 2871.
2. Lenantes-Lee, F. et al. J. Chem. Soc., Dalton Trans. 1999, 1. SND3255 Forms clear conductive films with cadmium ethylhexanoate and tin ethylhexanoate.1,2 1. Chem. Abstr. 111, 185562m; Jpn. Patent 01 81,119, 1989.
2. Chem. Abstr. 111, 185563n; Jpn. Patent 01 81,120, 1989. SND3258 Forms copolymers with acrylates and α-olefins.1 1. Montermoso, J. et al. U.S. Patent 3,016,369, 1958. SND3280 Yields dialkylcarbonates on reaction with ethylene carbonate.1
Couples thioacetates to disulfides.2 1. Sakai, S. et al. J. Chem. Soc., Chem. Commun. 1975, 265.
2. Sato, T. et al. Tetrahedron Lett. 1990, 31, 3595. SND3320 Copolymerizes with styrene.1 1. Zubov, V. Chem. Abstr. 112, 212937n; Vysokomol. Soedin., Ser. A 1990, 36, 1144. SND3350 Employed in selective oxidation of alcohols.1
Deacetylates N- and O- acetyl nucleosides.2 1. David, S. et al. J. Chem. Soc., Perkin Trans. 1979, 1, 1568.
2. Chwang, T. et al. J. Carb. Nucleosides Nucleotides 1980, 7, 159. SND3534 Reagent for formation of α-oxo amides from acid chlorides.1 1. Hua, R. et al. J. Org. Chem. 2004, 69, 974. SND3610 Useful dechlorinating agent.1 1. Cardin, D. et al. J. Chem. Soc., Chem. Commun. 1967, 1034. SND4062 Component in conductive pastes.1 1. Jpn. Patent 57 027,505; Chem. Abstr. 96, 209220. SND4200 Intermediate for SnO deposition on glass.1 1. Ceramics (Japan) 1969, 4(10), 852. SND4505 Stabilizer for chlorinated resins.1 1. Jenkins, R. et al. U.S. Patent 2,578,359, 1951. SNE4620 Can be cross-coupled with aryl chlorides.1
Used to acylate aryl triflates.2
Undergoes Stille cross-coupling reactions as employed in the syntheses of three cladiellins.3
Cross-couples with vinyl sulfides.4
Can be cross-coupled with heteroaromatic chlorides.5 1. Soderquist, J. et al. Tetrahedron Lett. 1983, 24, 2361.
2. Stoltz, B. M. et al. J. Am. Chem. Soc. 2000, 122, 9044.
3. Clark, J. S. et al. Angew. Chem., Int. Ed. Engl. 2010, 49, 9867.
4. Schleiss, J.; Rollin, P.; Tatibouet, P. Angew. Chem., Int. Ed. Engl. 2010, 49, 577.
5. Hong. L. et al. Bioorg. Med. Chem. Lett. 2010, 20, 679. SNE4900 Undergoes reactions at triple bond.1
Pd catalyzed reactions with alkenyl and aryl iodides yields acetylenes.2,3 1. Stamm, W. J. Org. Chem. 1963, 28, 3264.
2. Stille, J. et al. J. Am. Chem. Soc. 1987, 109, 2138.
3. Stille, J. et al. J. Org. Chem. 1989, 54, 5856. SNH5900 Stannyl lithium derivative undergoes conjugate addition to enones which may be alkylated.1
Sensitizer for photoannulations.2 1. Still, W. J. Am. Chem. Soc. 1977, 99, 4836.
2. Curran, V. et al. J. Am. Chem. Soc. 1989, 111, 8872. F&F: Vol. 14, p 173; Vol. 16, p 174. SNH6120 Performs one electron reductions of pyridinium cations.1
Employed in the preparation of affinity chromatography columns.2 1. Fukuzumi, S. et al. J. Am. Chem. Soc. 1990, 112, 3246.
2. Abdullah, K. et al. Bioorg. Med. Chem. Lett. 1995, 5, 519. SNM6488 Forms copolymers with acrylates, α-olefins,1 vinyl acetate, vinyl pyrrolidinone.2 1. Montermoso, J. et al. J. Polym Sci. 1958, 32, 523.
2. Messiha, N. Polymer 1981, 22, 807. SNM6521 Catalyst for conversion of alcohols to ethers, e.g. pentanediol to tetrahydropyran.1 1. Taglianini, G. et al. Tetrahedron Lett. 1989, 45, 1187. SNP6740 Transfers phenyl group to allylic acetates in Pd catalyzed reactions.1,2 1. Stille, J. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
2. Kosugi, M. Chem. Lett. 1987, 1237. SNP6765 Phenylmercaptide transfer reagent, forms thio ester from acid chlorides.1 1. Harpp, D. et al. Tetrahedron Lett. 1979, 20, 2853. SNP6828.4 Exhibits 3rd-order non-linear optical properties.1,2 1. Yamashita, M. et al. Appl. Surf. Sci. 1998, 130-132, 883.
2. Yamashita, M. et al. J. Phys. Chem., B 1998,102, 5165. SNP6925 Reacts with bicycloalkenylbis(phenyliodonium)triflates to yield bicyclic enediynes.1 1. Ryan, J. et al. J. Org. Chem. 1996, 61, 6162. SNP6929 Used in the cross-coupling approach to 3-substituted pyranones.1 1. Lopez, O. D. et al. Tetrahedron Lett. 2007, 48, 2063. SNP6935 Stille coupling with phenanthroline forms dipyridylphenanthroline ligand.1 1. Zong, R. et al. J. Am. Chem. Soc. 2004, 126, 10800. SNT7040 Reviewed.1
Catalyst for polymerization of α-olefins.2
Provides homoallyl alcohols from aldehydes in methanol without catalysts.3
Allylates benzylhydrazones.4 1. Kelly, T. R.; Ma, Z. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 7, 4716-4717.
2. Li, T. Brit. Patent 921,256, 1960; Chem. Abstr. 59, 1776.
3. Cokley, T. et al. Tetrahedron Lett. 1996, 37, 1905.
4. Manabe, K. et al. J. Org. Chem. 1999, 64, 8054. SNT7064 Forms mixed oxoalkoxides with Al.1,2 1. Lu, G. et al. Langmuir 1998, 14, 1532.
2. Caruso, J. et al. Inorg. Chem. 1995, 34, 449. SNT7072 Catalyzes silyl enol ether alkylations with alkyl bromides.1 1. Gingras, M. Tetrahedron Lett. 1991, 32, 7381. SNT7270 Reacts with perfluorocarboxylic acids to give triethylstannylperfluorocarboxylates.1 1. Frasch, M. et al. Chem. Ber. 1992, 125, 1763. SNT7278 Reacts with optically active binapthyl compounds to give optically active Lewis acids.1
Forms sensor structures templated by cellulose fibers.2 1. Noyori, R. et al. Jpn. Patent 04 091 093, 1992; Chem. Abstr. 117, 171695u.
2. Huang, J. et al. Chem. Mater. 2005, 17, 3513. SNT7350 Reacts with tris(aminoalkyl)amines, yielding azastannatranes.1 1. Plass, W. et al. Inorg. Chem. 1993, 32, 5145. SNT7560 Reviewed.1
Forms transparent conductive oxides for photovoltaics by PECVD.10
Safety and handling considerations.11
In combination with WCl6 catalyzes olefin metathesis.2
Allows synthesis of even numbered alkanes.3
Converts acid chlorides to methyl ketones with benzylchlorobis(triphenyl phosphine)palladium.4,5
Forms aryl methyl ketones from aryl halides and CO in the presence of dicarbonylbis(triphenylphosphine)nickel.6
For CVD of tin oxide transparent conductive electrodes on glass for photovoltaics and sensors.7
Pyrolyzed in vacuum to tin at 600-750°.8
Pyrolyzed oxidatively to SnO at 350-600°.9 1. Scott, W. J.; Jones, J. H.; Moretto, A. F. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 8, 4823-4825.
10. Chandra, H. et al. Am. Vac. Soc. 2008, 55, TFThA10.
11. Kalb, P. et al. Report BNL-52123, 1987 Order NTIS #DE89005936.
2. van Dam, P. et al. J. Chem. Soc., Chem. Commun. 1972, 1221.
3. Gibson, T. et al. J. Org. Chem. 1981, 46, 1821.
4. Milstein, D. et al. J. Org. Chem. 1979, 44, 1613.
5. Labadie, J. et al. J. Am. Chem. Soc. 1983, 105, 6129.
6. Tanaka, M. Synthesis 1981, 47.
7. Inagaki, N. J. Appl. Polym. Sci. 1989, 37, 2341.
8. Svoboda, G. et al. Ind. Eng. Chem. Res. 1992, 31, 19.
9. Borman, C. et al. J. Electrochem. Soc. 1989, 136, 3820. SNT7760 Polymerizes perfluoroalkylacetylenes in combination with WCl6.1
Cocatalyst with NbCl5 for trimerization-cyclization of diynes.2 1. Tsuchihara, K. et al. Chem. Abstr. 110, 95877t; Polym. Bull. 1988, 20(4), 343.
2. Srinivasan, R. et al. J. Mol. Catal. 1989, 53, 203. SNT7906 Reviewed.1
Asymmetrically allylates prochiral ketones with high ee's.2
Allylates α-keto esters with high enantioselectivty.3 1. Scott, W. J.; Moretto, A. F. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 7, 4830-4831.
2. Wooten, A. J. et al. Org. Lett. 2007, 9, 381.
3. Zheng, K. et al. J. Org. Chem. 2007, 72, 8478. SNT7920 Catalyzes reaction between propargyl iodides and aldehydes to form a mixture of β-hydroxyallenes and β-hydroxy acetylenes.1
Employed in CVD of tin (ll) sulfide.2 1. Mukaiyama, T. et al. Chem. Lett. 1981, 621.
2. Price, L. et al. Chem. Mater. 1999, 11, 1792. F&F: Vol. 1, p 1113; Vol. 2, p 389; Vol. 5, p 631; Vol. 6, p 554; Vol. 11, p 521; Vol. 13, p 298; Vol. 15, p 309. SNT7930 Converts 3,4-unsaturated aldehydes to cyclopentanones in CH2Cl2.1
SnCl4 etherate in combination with NaBH4 reduces amides to amines.2
Employed in PECVD of tin oxide.3
Mesostructured clear conductive SnO2 films prepared with surfactant templating.4 1. Cookson, R. et al. Chem. Comm. 1979, 145.
2. Tsuda, Y. et al. Synthesis 1977, 652.
3. Robbins, J. et al. J. Vac. Sci. Technol., A 2001, 19(6), 2762.
4. Miyata, H. et al. J. Mater. Res. 2003, 15, 1334. F&F: Vol. 8, p 452; Vol. 9, p 437. SNT7940 Reacts with allyl iodide to form allyltindifluoroiodide which forms homoallylic alcohols upon reaction with aldehydes.1
Component in Sn-Pb-P-F-O-glasses with organic dye receptivity.2
Intermediate for NaSnF3 and Sn3F3PO4.3 1. Mukaiyama, T. et al. F&F: Vol. 10, p 374; Chem. Lett. 1980, 1507.
2. Arma, M. et al. J. Non-Cryst. Solids 1991, 135, 79.
3. Salami, T. et al. J. Solid State Chem. 2004, 177, 800. SNT7960 Transesterification catalyst employed in manufacture of phthalate esters.1
Forms transparent conductive films on hot glass.2
Forms open frame macrocyclic structures with guanidine templates.3 1. Jenkins, L. et al. U.S. Patent 3,153,010, 1964.
2. Chem. Abstr. 111, 16204r; Jpn. Patent 63 257,121.
3. Natarajan, S. et al. Chem. Mater. 1999, 11, 1633. SNT7970 Employed in LPCVD of tin oxide surfaces.1 1. Wan, C. F. et al. J. Electrochem. Soc. 1989, 136, 1459. SNT7976 Catalyst for polymerization of olefins.1
Forms complexes with triphenylphosphinoplatinates.2
Employed in ALD of tin (lll) sulfide.3
In combination with H2S forms SnS photovoltaics.4
Employed in ALE of hafnia.5 1. Viguie, I. J. Electrochem. Soc. 1975, 122, 585.
2. Bushnell, G. et al. J. Am. Chem. Soc. 1982, 104, 5837.
3. Kim, J. et al. J. Phys. Chem., C 2010, 114, 17597.
4. Hägglund, C. et al. ACS Photonics, 2016.
5. Lee, Y. et al. J. Solid State Sci. Technol. 2015, 4, N5013. SNT7980 Diagnostic aid in radioactive bone-scanning.1
Prospective negative electrode for lithium batteries.2 1. Pavel, D. et al. J. Nucl. Med. 1977, 18, 305.
2. Behn, M. et al. Electrochim. Acta 2002, 47, 1727. SNT7993 Promotes aldol condensation via tin enolate.1 1. Mukaiyama, M. Tetrahedron 1984, 40, 1381. F&F: Vol. 11, p 525; Vol. 13, p 301; Vol. 14, p 305; Vol. 15, p 303; Vol. 17, p 341. SNT8065 Reviewed.1 1. Palkowitz, A. D.; Thrasher, K. J.; Hauser, K. L. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 8, 5035-5037. SNT8076 Forms Grignard.1 1. Albert, H. et al. Synthesis 1980, 942. SNT8085 Yields cis-alkenes on hydrolysis of reaction products with trialkylalkynylborates.1 1. Hooz, J. et al. Tetrahedron Lett. 1976, 805. F&F: Vol. 6, p. 604; Vol. 7, p. 378, Vol 13, p 315; Vol. 19, p. 352. SNT8087 Reviewed.1
Catalyst for reaction of silylnitriles with aldehydes to form hindered silylcyanohydrins.2
Forms amino acid derivatives from aldimines.3 1. Tanaka, M.; Sakakura, T. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 2, 1420-1421.
2. Scholl, M. et al. J. Org. Chem. 1994, 59, 7178.
3. Ishtani, H. et al. J. Am. Chem. Soc. 2000, 122, 762. F&F: Vol. 10, p 411. SNT8095 Selectively desilylates bis-silyl enol ethers.1
Regioselectively arylates silyl enol ethers with ArBr and PdCl2(PAr3)2.2 1. Urabe, H.; Kuwajima, I. Tetrahedron Lett. 1983, 24, 5001.
2. Kuwajima, I. F&F: Vol. 11, p 544; J. Am. Chem. Soc. 1982, 104, 6831. SNT8110 Cleaves γ-bromo-β-lactones to oxazolidines and homologs.1
Converts allylic hydroperoxides quantitatively to stannyl peroxides.2
Undergoes alcohol exchange, cyclization reactions.3 1. Shibata, I. et al. J. Org. Chem. 1990, 55, 2487.
2. Haynes, R. et al. Chem. Comm. 1990, 6, 448.
3. Delmont, B. et al. J. Organomet. Chem. 1973, 47, 337. F&F: Vol. 16, p 351. SNT8120 Employed in synthesis of methyltrioxorhenium.1 1. Hermann, W. et al. Inorg. Chem. 1992, 31, 4431. SNT8130 Reviewed.1
Reduces organic halides.2
Reduces acid chlorides to aldehydes.3
Reduces enol triflates to olefins.4
Effects partial reductions of chlorosilanes.5
Rate constant for aryl radicals: 7.8 x108 M-1s-1 .6
Reductions reviewed.7
Reacts with HfCl4 to provide hafnium hydride species, which reduces aldehydes and ketones.8 1. RajanBabu, T. V. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 8, 5016-5023.
2. Van Der Kerk, G. F&F: Vol. 1, p 1192; J. Appl. Chem. 1937, 7, 366.
3. Kuivala, H. J. Org. Chem. 1961, 25, 284; J. Am. Chem. Soc. 1966, 88, 571.
4. Scott, W. et al. J. Am. Chem. Soc. Soc. 1986, 108, 3033.
5. Paetzold, U. et al. J. Organomet. Chem. 1996, 508, 147.
6. Garden, S. et al. J. Org. Chem. 1996, 61, 805.
7. Neumann, W. Synthesis 1987, 665.
8. Shibata, I. et al. Synlett 2009, 1495. F&F: Vol. 1, p. 1192; Vol. 2, p. 424; Vol. 3, p. 294; Vol. 4, p. 518; Vol. 5, p. 685; Vol. 6, p. 604; Vol. 7, p. 497, Vol. 9, p. 476; Vol. 10, p. 411; Vol. 11, p. 545; Vol. 12, p. 516; Vol 13, p 316; Vol. 14, p. 312; Vl. 15, p. 325; Vol. 16, p. 343; Vol. 19, pp. 352-359; Vol. 21, p. 333. SNT8140 Reagent for the synthesis of Z-olefins.1 1. Corey, E. J.; Eckrich, T. M. Tetrahedron Lett. 1984, 25, 2419. SNT8159 F&F: Vol. 7, p 165. SNT8520 Induces brain lesions in rats.1 1. Alessandri, B. et al. Neurotoxicology 1994, 15, 394. F&F: Vol. 17, p 388. SNT8585 Review of synthetic utility.1
Undergoes cis addition to terminal acetylenes with Bu3Sn internal.2
Intermediate for 3-substituted cyclobutenone.3
Sn-Si bond shown to react with COD Pt(cod)2 and phosphines to form bis((phosphino)silyl)tinplatinum(ll) complexes, which insert into acetylenes.4
Used in the synthesis of α-amidotributylstannanes.5 1. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis, Fuchs, P. L. Ed., John Wiley and Sons, Ltd., 2011, p. 719-723.
2. Chenard, B. et al. J. Org. Chem. 1986, 51, 3561.
3. Liebeskind, L. S. et al. J. Org. Chem. 1994, 59, 7917.
4. Sagawa, T. et al. Organometallics 2003, 22, 4433.
5. Mita, T.; et al. Synthesis 2012, 194. SNT8623.5 Forms stannyl enones stereoselectively from alkynyl ketones.1 1. Dodero, V. et al. J. Org. Chem. 2003, 68, 10087. SNT8624 Chloride ionophore employed in sensor membrane.1 1. Tan, S. et al. Anal. Chim. Acta 1991, 255, 35. SNT8650 Intermediate for the preparation of phenyllithium.1
Enolates undergo erythro-selective aldol condensations.2 1. Seyferth, D. et al. Org. Syn. 1961, 41, 30.
2. Yamamoto, Y. F&F: Vol. 10, p 451; J. Chem. Soc., Chem. Commun. 1981, 162. SNT8683 Catalyst with (C6H5)3nC6H13P+I- for conversion of butadiene to tetrahydrofuran.1 1. Phillips, G. et al. U.S. Patent 5,315,019, 1994. SNT8700 Reducing agent.1
Effects reductive acylations of ketones with acid chlorides yielding esters.2
Uncoupler of mitochondrial oxidative-phosphorylation.3 1. Ingham, R. Chem. Rev. 1960, 60, 459.
2. Kaplan, L. J. Am. Chem. Soc. 1966, 88, 4970.
3. Quirk, P. et al. J. Gen. Microbiol. 1989, 135, 2577. F&F: Vol. 1, p. 1250; Vol. 3, p. 324; Vol. 4, p. 559; Vol. 5, p. 734. SNV9100 Reviewed.1
Intermediate for vinyllithium by exchange with phenyllithium.2
With CO forms divinyl ketones on reaction with vinyl iodides.3
Reacts with IC6H4CHO in DMF with PdCl2(CH3CN)2 to yield CH2=CHC6H4CHO.4
Reacts with halopyrimidines to yield vinylpyrimidines.5
Employed in one-pot synthesis of pyrroles.6 1. Scott, W. J.; Moretto, A. F. in Encyclopedia of Reagents for Organic Synthesis 1995, Volume 8, 5503-5506.
2. Seyferth, D. et al. J. Am. Chem. Soc. 1961, 83, 3583.
3. Goure, W. et al. F&F: Vol. 12, p 45; J. Am. Chem. Soc. 1984, 106, 6417.
4. Bumagin, N. Chem. Abstr. 111, 214179; Metal Org. Chem. 1989, 2, 475.
5. Kondo, Y. et al. Chem. Pharm. Bull. 1989, 37, 2814.
6. Nakamura, M. et al. Org. Lett. 1999, 1, 1505. SNZ9760 Flame retardant for polyesters.1 1. Hornsby, D. et al. Polym. Degrad. Stab. 1991, 32, 299. SSP-040 Employed in preparation of ceramic fibers.1 1. Yajima, S. et al. Nature 1977, 266, 521. SSP-060 Employed as a coupling agent for polyamides.1
In combination with glutaraldehyde immobilizes enzymes.2 1. Arkles, B. et al. SPI 42nd Composite Inst. Proc., 21-C, 1987
2. Cramer, S. et al. Biotechnol. Bioeng. 1989, 33(3), 344. SSP-070 High oxygen permeability.1 1. Masuda, Y. et al. J. Am. Chem. Soc. 1983, 105, 7473. VAT-4326 Employed as a matrix polymer in vapor sensor films.1 1. Blok, E. et al. US Patent 7,138,090, 2006. W-SIO-76-03 Hydroxy functionalization may be increased by immersion in a 1:1 mixture of 50% aqueous sulfuric acid:30% hydrogen peroxide for 30 minutes, followed by rinses in D.I. water and methanol and then air drying. Alternatively, if sodium contamination is not critical, boiling with 5% aqeous sodium peroxodisulfate, followed by acetone rinse is recommended.1 1. Shirai, K. et al. J. Biomed. Mater. Res. 2000, 53, 204.